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ABSTRACT 

NASA designed the Kepler spacecraft to detect extrasolar planets, but after several 

successful years, with many new discoveries, two out of four reaction wheels failed. 

NASA repurposed Kepler to continue science under the new mission, K2. The physics of 

how Kepler detects planets, the transit method, is first described. As part of this 

description it is shown that pointing noise is the limiting factor of Kepler’s ability to 

detect planets. The second part of this thesis uses a flat plate solar torque model of Kepler 

in order to assess the capabilities of the spacecraft in other “off ecliptic” attitudes. This 

analysis concludes that the controllability of the failed spacecraft in the presence of the 

solar torque is the main driver for the new K2 mission attitude and that conducting 

science out of ecliptic plane attitudes present challenges from the control point of view. 
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I. INTRODUCTION 

NASA began the Discovery Program in 1992 to “unlock the mysteries of the solar 

system” [1]. In 1995, two scientists, “Mayor and Queloz reported detection of the first 

extrasolar planet orbiting a solar-like star” [2]. NASA outlined the goal to find more 

habitable extrasolar planets in its 1998 Strategic Plan [2]. As a result of these science 

visions, NASA created the Kepler spacecraft, which NASA stated was “designed to 

detect transits of Earth-size planets in the ‘habitable zone’ orbiting 9<mv<15, F through 

M type dwarf stars… in the constellations Cygnus and Lyra” [3]. As outlined by NASA’s 

Discovery program, Kepler had the scientific objective to “yield a broad understanding of 

planetary formation, the frequency of formation, the structure of individual planetary 

systems and the generic characteristics of stars with terrestrial planets” [4]. 

A. KEPLER MISSION AND SPACECRAFT  

The Kepler spacecraft launched on March 7, 2009, had a mission to find 

extrasolar Earth-like planets, mainly using the transit detection method [3]. The predicted 

number of planets that are in the habitable zone and can be detected is about 1% of all 

estimated planets in the habitable zone [5]. Therefore, a location needed to be chosen 

with a large group of main sequence, Sun-like stars, to provide a statistically useful 

amount of possible detections. Another constraint on the search area was due to the fact 

that Earth-like planets are expected to have no more than one transit a year, and on 

average that transit will only last about 6.5hr [3]. Because of this limited window of 

opportunity, it was also necessary to pick a grouping of stars and an orbit that would not 

be obstructed by the Earth, Sun or the Moon. The star field chosen that best met the 

above criteria was a group of approximately 160,000 stars between the constellations of 

Cygnus and Lyra, centered on a right ascension of 19h 22m 40s and a declination of +44d 

30m 00s as shown in Figure 1. . 
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Figure 1.  Kepler field of view, from [3] 

The relation of this star field to the ecliptic plane means these stars will not be 

blocked by the Sun. In order to ensure that the spacecraft is not blocked by the Earth or 

the Moon the orbit had to be carefully chosen. Originally, the orbit was planned to be 

around a special point in the Sun, Earth, Moon system called the Lagrange 2, (L2), point 

as shown in Figure 2. . 
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Figure 2.  Depiction of original Kepler L2 orbit, from [2] 

Insertion into this special orbit would have required the spacecraft to have a 

propulsion system and a large Delta launch vehicle, so in the interest of cost reduction the 

propulsion system was removed, the launch vehicle was changed and the orbit was 

altered to the Earth trailing heliocentric orbit [2], seen in Figure 3. . 

 
Figure 3.  Kepler’s heliocentric orbit, after [6] 

 3 



The heliocentric orbit provides several benefits. It allows near continuous viewing 

of the Cygnus field. The only planned time where viewing will be limited is during the 

main data u·ansmittal to the ground which occurs approximately every 31 days and then 

during the quarterly 90 degree tum of the spacecraft to re-orient the solar panels towards 

the Sun [3]. Another benefit of the heliocentric orbit is that the number of disturbances 

experienced by Emih orbiting satellites is reduced. The main disturbance acting on 

Kepler is due to solar radiation pressure. 

In addition to selecting the con ect orbit and group of stars the satellite itself has 

some ve1y imp01iant components to allow it to detect planets. The main components are 

highlighted in Figure 4. and each one will briefly be described to highlight its 

importance. 

Sun-shade 

Radiator 
\ 

Solar Panels 

Figure 4. Kepler flight system, showing integrated photometer and spacecraft, 
after [3] 
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Kepler consists of two main components, the spacecraft bus and the photometer. 

The spacecraft bus is the bottom part of Kepler; it is a hexagonal shape and contains most 

of the components of the spacecraft. The star trackers provide coarse-guidance 

information and the Kepler control boxes (KCBs), command the photometer, and receive 

and co-add data from the pixels [3]. The LGA, low gain antenna, allows the spacecraft to 

receive telemetry and downlink data at a low rate, but from most orientations. The HGA, 

the high gain antenna, on the other hand, is for the main data transmittal and provides a 

high data rate. This is the main antenna used during the approximate 31-day data 

transmissions. In order to use the HGA, Kepler must be rotated so the HGA is pointed 

towards Earth. The solar panels consist of three main pieces, two triangular-like and one 

rectangular that provide the power requirements of the Kepler spacecraft. Since the 

panels do not go around the whole spacecraft, it is necessary to roll the spacecraft about 

every 90 days to keep the solar panels facing the Sun. The sun-shade protects the 

photometer and the instrumentation from being saturated by light from the Sun. The 

radiator on the back of the spacecraft helps ensure the desired operating temperatures can 

be maintained. In addition to the equipment shown in Figure 4. , there are four reaction 

wheels, which provide “<0.009 arcsec 3σ single axis pointing stability” [3]. 

A cutaway of the photometer, arguably the most important part of the spacecraft, 

is shown in Figure 5. . 
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Figure 5.  Kepler photometer architecture, from [3] 

There are several key components to highlight in reference to the photometer. It is 

a wide-field Schmidt telescope; this means that the light from the star field enters Kepler 

through the top of the photometer, refracts through the Schmidt corrector, which is a flat 

lens that removes certain aberrations, and then is reflected by the primary mirror onto the 

focal plane array. It has an entrance aperture diameter of 950mm, a f/#=1.473, an 

effective focal length of 1399.20mm, a 16.1° field of view and a 1.4m primary mirror. 

The focal plane array consists of 21 science and 4 fine guidance senor, FGS, CCD 

modules. In total, the science CCD modules have a combined 94.6 million 27 x 27μm 

pixels, each with a well depth >1.0x106 electrons. The FGS use 13x13μm pixels to 

provide more precise pointing accuracy than can be obtained using the star trackers [3].  

Kepler must stare at the same star group for at least 3.5 years to capture at least 

three transits of an Earth-like planet to provide the statistical confidence necessary for  
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planet detection [3]. Kepler accomplishes this by using two specific collection modes, 

short cadence, SC, and long cadence, LC. One set of data is collected during a 6.54-

second frame, which consists of the integration time (the time between pixel reads), the 

pixel read time and the exposure time (the time the pixel collects photons before being 

read) [3]. The SC is a mode that coadds, or combines, the data from a number of frames. 

Typically, 9 frames are used in an SC totaling around 59s. A typical LC is a co-adding of 

30 SCs, for about 30 minutes of data. The SC is used for asteroseismology and transit 

timing of exoplanets, whereas the LC is used for the normal transit method. The majority 

of science data is obtained using LC [7]. 

Kepler has been extremely successful at planet detection; the most recent numbers 

are 989 confirmed planets, and 4234 planet candidates [8]. Kepler is a photometer, so it 

identifies planets by measuring photons, but does not provide a visual image; therefore, 

one way a planet is confirmed is through observation by other instruments like ground 

telescopes [9]. Besides the average planet that orbits around a star similar to the planets in 

the Earth’s solar system, Kepler has also made unique discoveries like multiple planets 

orbiting double star systems and planets around a four-star system [10]. Possibly the most 

exciting day in Kepler science was February 26, 2014, referred to as the Kepler Planet 

Bonanza, when on one day NASA confirmed the discovery of 715 planets orbiting 305 

stars [11].  

Figure 6.  shows that until the Kepler Planet Bonanza only about 1000 exoplanets 

had been discovered, which includes discoveries by Kepler and other telescopes; after the 

announcement there were about 1700 planets discovered. The Kepler Planet Bonanza was 

clearly an historic day and proved the success of the Kepler mission. 
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Figure 6.  Exoplanet discoveries 1995–2014, from [12] 

Figure 7.  is a second view of the data announced on February 26, 2014; it details 

the number of new planets and the size of the planets announced compared to all 

discoveries before the Kepler Planet Bonanza. One of the key points from Figure 7.  is 

that Kepler was designed to find Earth-like planets, and before Kepler most planet 

discoveries had been large Jupiter-size planets. 
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Figure 7.  Comparison of size of exoplanet discoveries, from [12] 

Unfortunately, after almost four years Kepler could no longer collect data that 

produced results like the Kepler Planet Bonanza. Kepler lost one of its four reaction 

wheels in July 2012 and a second in May of 2013 preventing 3-axis attitude control 

resulting in the end of the original Kepler mission [13]. Initial analysis determined that 

instead of the <9 milliarcsec pointing stability, over the 30 minute LC, the degraded 

pointing stability would amount to between 0.5–1.0 arcsec of jitter and a drift of about 

1.4 degrees over 4 days, as shown in Figure 8. . Instead of the target star remaining 

centered on the same location on the CCD, for most of the observation period it would 

move across the CCD. This creates a risk for target stars to fall off the CCD and, if this 

happens, they can no longer be observed. In addition, extra noise due to unaccounted for 

multiple pixel interactions, is expected. 
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Figure 8.  Schematic view of two possible point-drift mode observations on a 

CCD, from [14] 

Although the remaining reaction wheels were not able to provide Kepler with the 

required pointing stability to detect planets in Cygnus and Lyra, the science equipment on 

Kepler was still functional. Therefore, in August 2013, when NASA decided to officially 

suspend the original Kepler mission [14], NASA also requested ideas from the science 

community at large on possible new uses for Kepler, ultimately resulting in what is now 

referred to as the K2 mission. 

B. THE K2 MISSION 

The K2 mission is a new mission utilizing the failed Kepler spacecraft. The main 

driver behind this new mission is the reduction in pointing stability of Kepler due to solar 

torque. If uncontrolled, solar torque induces a rotation around all three axes of the 

spacecraft. Moreover, all three axes cannot be controlled with only two reaction wheels 

and conventional linear control techniques [15]. To address this issue, engineers at Ball 

Aerospace developed hybrid control architecture for Kepler: a combination of the two 

remaining wheels controlling the spacecraft along two of the three axes, momentum 

biasing of the wheels for stiffening the third axis and thruster control to control error 
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accumulation around the third axis [13]. Specifically for Kepler, this is best implemented 

by minimizing the solar torque effects around the uncontrolled axis. The minimum solar 

torque occurs when the spacecraft bore-sight is pointed in the ecliptic plane [13], 

meaning that Cygnus and Lyra can no longer be viewed. The combination of the hybrid 

control scheme and the requirement to minimize the solar torque resulted in the K2 

mission oriented in plane with the ecliptic in such a way that the solar torque along the 

photometer axis is near zero as shown in Figure 9. . This new pointing mechanism results 

in an estimated 10 arcsec drift in an 8-hour period. This gives a new pointing stability of 

about 0.63arcsec of drift in a 30 minute, LC period [13]. This stability is much less than 

that of the original mission. 

 
Figure 9.  Conceptual illustration of K2, from [16] 
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Currently, there are 12 campaign periods planned through 2016, each lasting 

about 90 days [16]. The campaigns correspond to different areas in the celestial sky that 

can be seen from the ecliptic. Although the pointing stability of the K2 mission is reduced 

and does not allow for the same type of planet detection of the original Kepler mission, 

new science targets are possible, including [17]: 

• Possible transiting planet hosts 

• Pulsational variable stars 

• Rotationally variable stars 

• Flaring stars 

• Accreting stars and interacting binaries 

• Galaxies and supernovae 

• Microlenses 

C. THESIS OBJECTIVE AND SCOPE  

This thesis focuses on two objectives. The first objective is to describe how 

Kepler detects planets. This elucidates an understanding of the original pointing 

requirements and helps explain why the original mission could not be continued. The 

analysis on pointing stability attempts to bridge the gap between science requirements 

and engineering requirements.  

The second objective was to develop a solar torque model of Kepler in order to 

assess the capabilities of the spacecraft in other “off ecliptic” attitudes. The goal is to 

explore the types of science possible in attitudes not considered as part of the K2 mission. 

This thesis consists of eight chapters, including this one. Chapter II provides a 

definition for planets, explains how stars are classified and gives a brief overview of 

different methods used to detect planets. Chapter III specifically explores the transit 

detection method, the method mainly used by Kepler. Chapter IV explains the scientific 

requirements that must be met to detect planets using the transit method. A simple solar 

torque model is developed to facilitate the analysis. Chapter V provides the background 

necessary to understand the effects of solar torque on a spacecraft. Chapter VI details the 

development of the Kepler solar torque model and compares the model to other available 
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results. Finally, Chapter VII explores the achievable pointing stability considering the 

inability to control the spacecraft around all three axes with only two wheels. This thesis 

is brought to a close with some concluding remarks and suggestions for future work in 

Chapter VIII. 
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II. PLANET HUNTING 

For over 2000 years, mankind has explored the skies, and wondered whether the 

Earth was the only planet; philosophers contemplated ideas such as: “There are infinite 

worlds both like and unlike this world of ours” (Epicurus, 341–270 BCE) and “There 

cannot be more worlds than one” (Aristotle, 384–322 BCE) [18]. Although six of the 

eight planets in our solar system are visible to the naked eye and were known by Greek 

astronomers, including Aristotle, they were not necessarily identified as similar objects to 

Earth. After the invention of the telescope around the seventeenth century, the other two 

solar system planets, Uranus and Neptune, were discovered in the eighteenth and 

nineteenth centuries [19]. Then, in 1994, the first extrasolar planet was discovered by an 

astronomer at Pennsylvania State University, Dr. Aleksander Wolszczan. This was 

followed by the discovery of the first extrasolar planet orbiting a sun-like star in 1995. 

Two more planets were discovered only months later. Most recently, the French launched 

CoRoT, has contributed several dozen confirmed exoplanets outside of our solar system 

[20], and Kepler has led to the discovery of 978 confirmed planets outside the solar 

system [21]. 

This chapter covers three main topics necessary to understand planet hunting. 

This first section provides the accepted description for a planet, and how that relates to 

the planet that Kepler is searching for. The second section discusses the current star 

classification system and its relevance to Kepler. The final section provides a brief 

overview of different planet detection techniques, including an overview of the transit 

method.  

A. DEFINING A PLANET 

1. International Astronomical Union 

The International Astronomical Union (IAU) was founded in 1919 “to promote 

and safeguard the science of astronomy in all its aspects through international 

cooperation” [22]. The union consists of professional astronomers from over 95 countries 

and national science societies representing 73 nations. Some issues that the IAU deals 
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with include defining “fundamental astronomical and physical constants [and] 

unambiguous astronomical nomenclature” [22].  

2. IAU Planet Definition 

In 2006, the IAU convened in Prague and, as part of its agenda, describes planets 

in the solar system using three categories, of which two are cited below:  

(1) A Planet is a celestial body that (a) is in orbit around the Sun, (b) has 
sufficient mass for its self-gravity to overcome rigid body forces so that it 
assumes a hydrostatic equilibrium (nearly round) shape, and (c) has 
cleared the neighbourhood around its orbit. (2) A “dwarf planet” is a 
celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for 
its self-gravity to overcome rigid body forces so that it assumes a 
hydrostatic equilibrium (nearly round) shape (c) has not cleared the 
neighbourhood around its orbit, and (d) is not a satellite. [23] 

Although these definition were specifically written with regards to the Earth’s 

solar system, it would be a fair assumption that this definition would also be fitting for 

extra-solar/exo planets, planets in orbit around other stars, which is what the Kepler 

mission is interested in. 

3. Planet Definition Relevant to Kepler Mission 

The IAU resolution, which defined the characteristics of planets in 2006, has not 

been without its opponents and critics [24]. In fact, when the Kepler mission was 

formulated the definition of the IAU did not even exist. Kepler’s main focus is habitable 

or Earth-size planets, which are defined by Koch et al. as “a solid body with a mass 

between ~.5 and ~10 Earth masses at a distance from its parent star such that the planet’s 

surface temperature and atmospheric pressure are consistent with the presence of liquid 

water” [2]. This ignores most of the key points in the definition of a planet as determined 

by the IAU. In contrast to the IAU definition, the Kepler mission was designed to find 

planets, which are described as any extra-solar object with the potential of supporting life 

like Earth. This does not mean that other objects were ignored, but the specific search for 

Earth like planets was used as part of the design requirements for the mission. 
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B. STAR CLASSIFICATION 

Astronomers as far back as Hipparchus have tried to create a system to classify 

stars; in the case of Hipparchus stars were organized by how bright they appeared to him 

[25]. This simple classification scheme continues to be modified until today. Two 

components of the current methods of star classification that are relevant to the Kepler 

mission are the apparent magnitude and the spectral class. 

1. Apparent Magnitude 

Astronomers developed a system to categorize stars by quantifying the relative 

magnitude, m, of a star; how the flux of one star relates to another or to some reference 

flux:  

 2
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The radiant flux, F, is a value that can be measured, and is the amount of energy 

emitted per second per unit of surface area. In one formulation the datum for the radiated 

flux was determined to set the star Vega with an apparent magnitude of zero, and the Sun 

was measured to have a flux at the Earth about 51 billion times greater than from Vega 

[26]. Therefore, the visual apparent magnitude of the Sun is: 
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There are two major drawbacks when using the relative magnitude to classify a 

star: (1) A star that is farther from the Earth, although brighter at its surface, could be 

classified as dimmer because of its distance. (2) The value of apparent magnitude is 

dependent on the measurement of flux, which depends on the type of filter used on the 

measuring instrument. To address the first concern astronomers defined the absolute 

magnitude, discussed in the next section. 

The issue about filters is that the flux and its measurement are wavelength 

dependent. The most common filters are U (ultraviolet), B (blue) and photo visual (V), 

which pass different wavelengths as shown in Figure 10. . 
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Figure 10.  Comparison of different filters, from [27] 

Because of the compositions of stars, it is fully expected that a star will have a 

higher apparent magnitude in one wavelength than another. One way to mitigate this 

ambiguity is to specify the type of filter was used. A second way, used by the Kepler 

team, is to develop equations that can encapsulate different values based on different 

filters in one apparent magnitude calculation.  

2. Absolute Magnitude 

As mentioned in the previous section the apparent magnitude is a measure of a 

star’s brightness measured from Earth, but this can be misleading because a star that is 

brighter but farther away may appear to be dimmer at the Earth then a dimmer but closer 

star. Therefore, the absolute magnitude system was devised to create a more objective 

standard for ranking stars. This system quantifies stars based on how they appear at a 

distance of 10 parsecs [25]. A parsec (abbreviated as pc) is “the distance to an object at 

which the orbit of the Earth subtends an angle of one arcsecond” [25]. Given that the 

orbit of the Earth is one astronomical unit, (AU), which is equal to 1.496x1011m, a parsec 

is defined as: 
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Unlike, the apparent magnitude, which uses flux measurements, the absolute 

magnitude, M, is: 

 102.5log
ref

LM
L

 
≡ −   

 
  (4) 

where luminosity, L, is the total energy emitted at the surface of a star and refL  is the 

reference luminosity [25]. 

Flux and luminosity are directly related. Flux is the luminosity measured at a 

given distance from the source spread through the surface of a sphere, therefore refL is 

related to a well-defined reference bolometric, all wavelength, flux measured at a 

distance of 10 pc [25] by : 

 24ref refL F dπ=   (5) 

with 

 8 22.53 10 / ; 10refF W m d pc−= × =   (6) 

giving: 
 28 23.0 10 /refL W m= ×   (7) 

As an example, it has been determined that the Sun has 24384.6 10L W= ×  [28]. 

Therefore, its absolute magnitude is: 

 
24

10 28
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M
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  (8) 

3. Spectral Classification 

Besides the magnitude of a star, an alternative way to compare stars is to use 

spectral classification. The beginnings of stellar classification by spectral type began in 

the 19th century with work done by Joseph von Fraunhofer with a comparison of the Sun 

to other stars [29]. This was followed with a more thorough approach by Father A. 

Secchi, who categorized around 4,000 stars into four categories defined by similar 

properties [29].  

Towards the end of the 19th century Harvard conducted a survey of even more 

stars and named this work and its results the Henry Draper Catalogue [29]. After several 
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iterations of examining these original results the now famous spectral categories of 0 , B, 

A, F, G, K and M were developed. The letter categories group the stars based on a 

temperature range and chemical make-up [29]. One such listing of ranges is summarized 

in Table 1. . 

Table 1. Temperature ranges of Harvard sequence, after [29] 

Star Class Temperature (°K) 

0 >25,000 

B 11,000-25,000 

A 7,600-11,000 

F 6,000-7,600 

G 5,100-6,000 

K 3,600-5,100 

M <3,600 

fu addition to the letter category, a number is added to represent where in the 

range of temperatures the star is. These numbers are between zero and nine [29], where 

zero refers to the highest temperature in the category and nine refers to the lowest. 

A second level of classification that adds to the Harvard classification system was 

developed around 1930 by an astronomer named W. W. Morgan [29]. The work done by 

Morgan classifies stars not only by their temperature and make-up as dictated by the 

letter and number but also by their luminosity or the absolute magnitude as described in 

the previous section. By categorizing stars in this manner, Morgan discovered that there 

were five additional groupings that could be made based on clusters of data. These 

groups are: 

• 1: Supergiants 

• II: Bright Giants 
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• III: Normal Giants 

• IV: Subgiants 

• V: Main Sequence Stars/Dwarfs [29] 

The different classification schemes are easily visualized through the use of a 

Hertzsprung-Russel (H-R) diagram, which shows many stars on a plot based on 

temperature versus magnitude, temperature versus luminosity and Harvard classification 

letters. An example of an H-R diagram is shown in Figure 11. . 

 
Figure 11.  Hertzsprung-Russell diagram of temperature vs. luminosity of stars, 

from [25] 

An example of a classification of a star using the categories described above is of 

the Sun. The Sun is classified as a G2V star; this means the Sun has a temperature around 

5800°K, which has been confirmed by measurement [28], hence G2 and it is a main 

sequence star, which explains the V.  

This classification scheme is significant because if one knows the star spectral 

classification one can calculate the approximate radius of a star using the physics of 
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blackbody radiation. Blackbody radiation relates the luminosity, L, and temperature, T, 

via the Stefan-Boltzmann constant, u as in: 

(9) 

Assuming the stars are spherical, the area, A in (9), is simply the smface area of 

sphere (A = 4nR2 
). Therefore, given the luminosity and temperature, the radius of the 

star can be computed as: 

R-JL 
-v~ 

Continuing with the example for the Sun: 

(10) 

(11) 

As seen in Figure 11 . , the absolute magnitude is similar for main sequence stars 

with similar temperatures, therefore, when a star other than the Slm is refened to as G2V 

it can be assumed to have a similar radius to the Sun, regardless of the apparent 

magnitude. This is an important point to remember because several times throughout this 

thesis a 12th magnitude G2V star is mentioned, which does not have the same apparent 

magnitude as the Sun, but it is assumed to have the same radius as the Slm. 

4. Apparent Magnitude and its Relevance to Kepler 

In Kepler's field of view there are about 160,000 stars, however there is not 

enough telemetry bandwidth to ti·ansmit infonnation for all the monitored stars [30]. This 

created a need to provide a mechanism to quickly and accmately identify and classify the 

potential target stars that provide the greatest odds for finding planets [30]. The absolute 

magnitude is not sufficient for this classification because it is based on the energy at the 

star 's surface, while Kepler is collecting light energy from star near the Emih. Therefore, 

use of the absolute magnitude would require additional data processing. Similarly, the 

apparent magnitude as explained is also not completely sufficient for this task. The 

reference flux or brightness needed to calculate the apparent magnitude is usually 

referenced to Emih and is filter dependent. Therefore, a modified version of the apparent 

magnitude was used to create a new Kepler magnitude; this is the apparent magnitude as 
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seen by the Kepler photometer and accounts for different values through different filters 

[30]. In order, to define the apparent Kepler magnitude data was collected and processed 

and a catalog of stars was developed to specifically use with the Kepler mission. 

For the purposes of this thesis the actual equations used to calculate the Kepler 

magnitude are not important. However, what is important is how many electrons are 

estimated to be read by the photometer for a given Kepler magnitude. This estimate is 

made by first modifying (2) to utilize values of photoelectron current instead of the flux. 

The photoelectron current is the number of electrons on a charge-coupled device (CCD) 

that are excited by the photons from the star, as in:  
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where , f, is the photoelectron current. 

In the design process, a 12th Kepler magnitude star was used as the reference star, 

which gives the reference photoelectron current, 52.1 10ref
ef
s

−

= ×  [3]. Using this 

reference photoelectron current for f1 in (12), taking 1 12m =  and given the Kepler 

magnitude of any star, m2, its photoelectron current can be calculated by: 

 ( )20 4 12
2 10 m
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Throughout the rest of this thesis the classification of a star will be identified by 

its Kepler apparent magnitude and its spectral class. 

C. PLANET DETECTION METHODS 

A third important part of background information to understand how Kepler 

performs its mission is to understand planet detection techniques.  

There are three main challenges for exoplanet discovery [31]: 

• Planets don’t produce any light of their own, except when young. 

• They are an enormous distance from us. 

• They are lost in the blinding glare of their parent stars.  
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While being cognizant of these constraints, scientists have developed several 

creative ways to detect exoplanets. These methods exploit advances in both physics and 

technology. Figure 12.  summarizes the available techniques. 

 
Figure 12.  Methods for detecting exoplanets, from [18] 

There are three particular points to note about Figure 12. . The symbol JM , refers 

to the mass of Jupiter, and M⊕  , refers to the mass of Earth. The numbers of discovered 

planets were updated as of 2010, so they do not reflect the discoveries of planets since 

then, specifically the numerous planets discovered by Kepler. According to NASA there 

are 5022 exoplanet discoveries, 1746 confirmed with over half coming from Kepler  

data [32]. 

As shown in Figure 12.  there are at least 10 methods that have been successfully 

used to discover exoplanets. These methods include radial velocity, astrometry, direct 

imaging, gravitational microlensing and transit. 
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1. Radial Velocity  

Radial velocity, sometimes referred to as the Doppler Shift method, exploits the 

notion that a star and its orbiting planet actually revolve around a center of mass; the 

planet thus has a gravitational tug on the star so there is a measurable change in the star’s 

position and velocity with time. The instruments measure the Doppler Shift resulting 

from the perturbation of the star. The larger and closer the planet is to the star the more 

noticeable this effect is, which is why some of the first planets discovered are Jupiter-

class [31]. However, as shown in Figure 12. , exoplanets with a mass close to the Earth’s 

can be detected using this method [18]. 

2. Astrometry  

Astrometric techniques exploit the same physics as the radial velocity technique, 

however instead of measuring the Doppler Shift astronomers measure the actual change 

in motion of the star [31]. The major limitation of this method is that largest expected 

displacements for the most massive nearby stars are not large enough for current state of 

the art technology [18]. Only one confirmed exoplanet has been discovered by the 

Astrometric method [32]. 

3. Direct Imaging 

Direct imaging, as its name implies, discovers planets by taking actual pictures. 

This is extremely difficult because of the problems listed above: planets normally do not 

produce light, they are very far away and glare from parent stars blocks them [31]. Two 

methods of direct imaging are coronography and interferometry: coronography uses a 

masking device to block out the light from a nearby star, while interferometry “uses 

specialized optics to combine light from multiple telescopes in such a way that the light 

waves from the star cancel each other out” [31]. 

4. Gravitational Microlensing  

As NASA explains gravitational microlensing exploits a result from “Einstein’s 

theory of general relativity: gravity bends space” [31].  
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Figure 13.  Gravitational microlensing example, from [31] 

As shown in Figure 13. , light starts from the source star and then instead of 

traversing an expected straight line is bent around the “lens” star, which corresponds to 

the lower red line. If a planet is orbiting the “lens” star it will contribute an extra bending 

of space-time, which “causes a temporary sharp increase in brightness and change of the 

apparent position of the star” [31]. The planet can be detected and its mass can be 

estimated by the amount of extra bending of the light. 

5. Transit Method  

Every star has a particular measurable brightness, however if a planet, or another 

object passes in front of the star its brightness is reduced. This reduction in brightness is 

what systems that employ the transit method attempt to measure [31]. In addition, to 

implying the existence of a planet, the reduction of brightness provides an estimate of the 

size of the planet and after several measurements it is possible to calculate the orbital 

period.  

D. SUMMARY 

This chapter defined a planet, explained star classification methods and provided 

a brief overview of a few different planet detection techniques. NASA and other space 

agencies have developed satellites and ground based systems to detect exoplanets using 

some of the techniques described above. In 1990, NASA launched the Hubble Space 

Telescope, and although not the primary mission has utilized the direct imaging method 
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to discover planets like Fomalhaut b [33]. The Spitzer Space Telescope, launched in 2003 

by NASA, uses IR sensors for direct image detection of exoplanets [33]. The Large 

Binocular Telescope Interferometer and Keck Interferometer also use the direct imaging 

technique [33]. CoRoT, launched in 2006 by CNES and ESA, and Kepler use the transit 

method to detect planets [33]. The next chapter will provide a more detailed explanation 

of the transit method, which is used by Kepler. 
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III. THE TRANSIT METHOD FOR PLANET DETECTION 

The Kepler spacecraft’s main method for detecting planets is the transit method, 

therefore a more thorough understanding of this concept is important. The data provided 

by Kepler can also be exploited using other methods, like transit timing variation as 

explained in [34], and a special algorithm that utilizes a phenomenon called beaming 

effect or Doppler boosting as explained in [35].  

According to Michael Perryman, 1999 marked the year of the first successful 

detection of an exoplanet using the transit method [18]. The basic premise as explained 

above is to measure the flux from the star and detect a drop in flux as a planet or other 

object transits in front of the star [18]. The decrease in flux is observed through the 

analysis of light curves, which plot the flux versus time. The light curve from the first 

planet detected utilizing the transit method is shown in Figure 14. . 

 
Figure 14.  Light curve from star with orbiting planet HD 209458,  

from [18] 

The transit method can be employed by both space and ground assets. Some 

examples of ground systems are Wide-Angle Search for Planets, MEarth project and 

Siding Spring Observatory Wide Field Imager [18]. Some space based assets include 
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Kepler, Hubble Space Telescope and CoRoT, (Convection, Rotation & Planetmy 

Transits) [33]. Space based systems have an advantage over ground-based systems in that 

there m·e no atmospheric abenations to deal with on orbit. As of 2011 , the smallest drop 

in flux that a ground system could detect was about 0.1 [18] whereas Kepler, for 

example, was designed to detect planets that cause a reduction as little as 20 palis per 

million, ppm, i.e. 20 x 1 0-{j . 

The basic goveming equation for flux reduction is defined as approximately the 

ratio between the radius of the transiting planet and the radius of star it orbits [18]: 

(14) 

where t:Ji' , is the transit depth also refened to as the loss in flux (a dimensionless 

quantity), RP , is the radius of the transiting planet and R. is the radius of the orbited star. 

Equation (14) assumes that both the stm· and the planet can be modeled with a circulm· 

cross-section. Usually, the radius of the planet is lmknown so the transit depth is 

measured and then the radius of the planet is approximated using (14). 

For a real planet orbiting a stm·, there are actually several changes that can occur 

with the measured flux fi:om the star as shown in Figure 15 .. 
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Figure 15. Schematic of a transit, after [18] 
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In Figure 15. , the bottom circular dashed line is the baseline flux expected from 

the star, whereas the uppermost dashed circular line represents the flux of the star and 

planet combined, this includes the light produced from the star reflected off the planet’s 

surface. The main transit, the one that provides the greatest transit depth occurs when the 

planet crosses directly in front of the star, calculated using (14). The secondary dip shown 

in Figure 15.  is actually because the starlight that is being reflected off the planet is being 

blocked by the star. The largest decrease is the former and that is the transit of interest. 

Also shown in Figure 15.  are times, Tt  the total transit time, and ft , the transit time 

measured by when the planet is completely eclipsing part of the star. 

Another property of the planet that can be calculated is an estimate of the orbital 

radius. If there are multiple passes observed the interval between the transits can be 

equated to the period of the orbit. Then using Kepler’s third law, which relates the period 

of an orbit to the orbital radius, the orbital radius is: 
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Where P is the period between transit depth measurements, G is Newtown’s universal 

gravitational constant, M∗ , is the mass of the star and r is the orbital radius. Using (15)

assumes a knowledge of the mass of the star. One approach for a quick approximation of 

the mass of a star is to relate it to the luminosity of the star, which is assumed known. 

The mass of a planet and luminosity are related by [36]: 

 3L M∗∝   (16) 

This relationship relies on several simplifications so for real stars the exponent is 

not 3, as an example stars that range between about half and two times the mass of the 

sun the exponent is 2.6 [36]. 

This chapter provided a more detailed explanation of the transit method used by 

Kepler and other instruments, but still only discussed the simplest aspects of the transit 

method. As mentioned in the introduction it has proven to be highly successful especially 

with regards to detecting relatively small planets that are about the size of the Earth. The 

past two chapters covered nomenclature and explained planet detection in a general 
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sense. The next chapter therefore will deal with planet detection and how it specifically 

relates to Kepler. 
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IV. KEPLER SCIENCE REQUIREMENTS 

As the previous chapter explained, the transit method is useful in detecting planets 

by measuring a change in the flux from the parent star. The advantage of space based 

systems like Kepler is the capability to detect planets even with very low decreases in 

flux. This is possible with precise instrumentation in the form of a CCD. This chapter 

will discuss photometric precision requirements, which are the specifics of the 

measurements being made that limit the measurement process. This chapter concludes 

with a discussion utilizing the theory developed in the first sections of this chapter to 

explain the engineering requirements of the original Kepler mission, expected science 

capability of Kepler after the failure of two reaction wheels and the current science 

capability after the engineering solutions described in the introduction. 

A. PHOTOMETRIC PRECISION REQUIREMENTS 

The photometric precision defines the minimum detectable transit depth and was 

the guiding principle in the design of the spacecraft. The first step was identifying the 

science goal, which as Borucki et. al. explained was to “detect a 13,000 km diameter (i.e., 

an Earth-sized) planet around an mv = 12, G2 spectral class, main sequence star” [5]. The 

Sun, in the Earth’s solar system is a G2V main sequence star [28] so the transit depth 

caused by the Earth relative to the Sun is: 
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  (17) 

Based on the fact that all stars classified as G2V are similar, the transit depth of 

the Earth to the Sun will be similar to any Earth like planet around any Sun like star.  

Another key design factor in determining the photometric precision was the 

signal-to-noise ratio (SNR). Based on work done by Borucki et. al., “a total SNR of 

approximately eight (or more) from a series of transits is needed to unambiguously 

recognize a planetary transit when many stars are monitored” [5]. Furthermore, the SNR 

for a single transit is: 
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 single transit #of transits
totalSNRSNR =   (18) 

A four year mission searching for an Earth-like planet, not just of similar size, but 

also of a similar orbit to Earth, would yield four transits providing a single transit SNR 

of: 

 single transit
8 4
4

SNR = =   (19) 

If the signal that must be detected is the transit depth of the Earth then the total 

allowed design noise floor is: 

 
5

5

single transit

F 8.4 10allowed noise floor= = 2 10
4SNR

−
−∆ ×

≈ ×   (20) 

Therefore, the photometric system for Kepler was designed such that for an Earth-

like planet orbiting a G2V star with m=12, the total allowed noise is 20ppm. If the noise 

is below 20ppm then the transit depth, the signal, is not only detectable but also 

statistically recognizable as a planet. 

B. CCD SIGNAL 

The desired detection signal is the transit depth; however there is a second signal 

of interest, which is the signal strength of the star’s original flux. The signal strength 

detected by a given pixel identified by n and m is representing its row and column is: 

 ( , ; ) ( , ; ) ( , ; )s n m f x y r x np y mq dxdyλ λ λ
+∞ +∞

−∞ −∞
= − −∫ ∫   (21) 

where f(x,y;λ) for a very distant source is the Point Spread Function (PSF), r(x,y) is the 

Pixel Response Function (PRF) and p and q are the pixel pitch [37]. 

1. PSF 

The PSF, or impulse response function of the optics system, describes the 

diffraction of light as it passes through an aperture and interacts with the optical 

equipment like lenses. In other words, the PSF describes how the intensity of the source 

is distributed over a given area.  
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The phenomena of light diffraction was first discovered in the 17th century; if 

light passes through an aperture, that has a dimension on the order of the wavelength of 

light then the light will be spread out, diffract, as seen in Figure 16. . This is referred to as 

the Huygens-Fresnel principle [38]. 

 
Figure 16.  Light diffracting by small aperture, from [39] 

Different shaped apertures can cause different refraction patterns. One such 

pattern explained by Fraunhofer [38], is that for a circular aperture; light will be 

diffracted as the Airy disk shown in Figure 17. . 

 
Figure 17.  Airy disk diffraction from circular aperture, from [39] 

In addition to diffraction caused by apertures, light can be diffracted by changing 

the focus of mirrors and lenses. Kepler was designed with the ability to change the focus 
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of light incident on the CCD’s in order to ensure the PSF covered several pixels to 

prevent pixel saturation [3]. Each pixel has a well depth, which is the maximum amount 

of excitable electrons available. If more photons interact with any individual pixel than 

available elections information would be lost. The PSF for Kepler was chosen to be a 

“best focus,” as shown in Figure 18. , and was tested via simulation software [40] and 

later calibrated in flight [3]. 

 
Figure 18.  Sample best focus axial point spread function (PSF) of the Kepler 

optics, from [40] 

The Kepler instrument was calibrated based on the requirement that 95% of the 

energy from the target star would be captured by an array of no more than 7x7 pixels, 

with 50% of the energy focused on the center pixel. Each pixel is a 27 μm x 27 μm 

square, so 7 pixels is 189 microns [3].  
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2. PRF 

The PSF describes what happens to the incident energy through the optical system 

while the PRF describes what happens to the light when it interacts with the CCD. Some 

information that can described by the PRF is intra-pixel variations, differences in 

response based on the location of incidence on individual pixels, and inter-pixel 

variations, interactions that occur between disparate pixels [37]. If a pixel is uniform, 

then regardless of where on the pixel the point source impacts the spread of the energy 

will be the same.  

In Kepler’s case the PRF includes the optical PSF, described above, the jitter 

Power Spectral Density (PSD), module defocus, the CCD response function, the 

electronic impulse response and any aberrations due to stellar spectra type [3]. Kepler’s 

pixels are non-uniform and the image will overlap several pixels, therefore five PRF’s 

were determined for each pixel array [41]. The five PRF’s consisted of one at each corner 

and one in the center of each pixel. This allowed for an interpolated PRF for any position 

on the pixel [41]. The PRF’s were developed through design, simulation, testing and 

finally in flight calibration where stars were selected, measured and PRF’s were updated 

to provide the best fit [3].  

3. Total Signal 

One method for using a CCD photometer is as follows: the source impacts the 

pixels, the energy is spread out, the electrons are read, and then through processing the 

signal is fit to the PRF and PSF to determine to the original source. PRF/PSF fitting is 

completed by using expected PRF/PSF of a target star and then comparing those results 

to the actual measurements [41]. This is useful in removing unwanted, but measured 

stars. As part of the processing it is necessary to know the total signal from a source; this 

signal is usually spread out over several pixels so it is the sum of the signals from the 

desired pixels [37]: 

 
,

( , ; )
n m

S s n m λ=∑   (22) 
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Since solving (22) in terms of the PRF and PSF is quite complicated instead of 

using (21) to calculate the total signal this thesis assumes that the photoelectron current, 

calculated from (13), over a specific time period is the total signal: 

 2S f t=   (23) 

C. NOISE 

Both space-based and ground based telescopes can be used to detect planets using 

the transit method. Ground-based telescopes do not have the limitations of cost and 

difficulty of launching large telescopes into space. Therefore, there is an advantage with 

regard to the possible aperture size. However, ground based telescopes have a great 

limitation due to the Earth’s atmosphere, the noise levels produced from atmospheric 

effects like atmospheric scintillation prevent current ground based telescopes from 

detecting planets smaller than ones that produce a transit depth no lower than  

about 1% [18]. This threshold limits ground based systems to detection of Jupiter size 

planets and larger. Thus, space-based telescopes are the preferred system of employment 

for transit detection of Earth like planets. 

For a space-based telescope the total measurement noise can be defined as a 

combination of signal noise and instrument noise [5]: 

 2 2
, ,noise signal noise instrument noiseσ σ σ= +   (24) 

1. Signal Noise 

The signal noise includes shot noise and noise due to stellar variability [5]. 

a. Shot Noise 

The shot noise is an inherent statistical noise that must be accounted for when 

using a CCD. The statistics of shot noise follow Poisson statistics [5]. Poisson statistics 

are governed by the Poisson distribution, which is the “number of counts… in a fixed 

interval of time” for a random process with a steady rate of change [42]. Given the 

number of electrons calculated from (23), and based on Poisson statistics the shot noise 

error is: 
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1

shot noise
error S
signal S S

σ = = =   (25) 

Therefore, as the magnitude of the signal decreases the shot noise increases. 

b. Stellar Variability 

Stellar variability defines the change in flux of a star due to different physical 

phenomena like sun spots. Ideally, the stellar variability of every target star would be 

known, however the only star at the time when the Kepler mission was designed that had 

data on its variability was the Sun in the Earth’s solar system. Therefore, the measured 

noise due to stellar variability of the Sun was used as the design figure of merit, with the 

assumption that most target stars will have similar stellar variability properties to the  

Sun [5]. 

c. Summary 

Combining the shot noise and stellar variability noise the total signal noise is: 

 2 2 2 2
, shot,noise stellar var,noise stellar var,noise

1
signal noise S

σ σ σ σ= + = +   (26) 

2. Instrument Noise 

The instrument noise combines dark current noise, read noise and pointing  

noise [5]. 

a. Read Noise and Dark Current Noise 

Read noise is the introduction of extra electrons due to reading the pixels, the two 

parts that contribute to read noise are: the conversion from an analog to digital signal and 

the characteristics of the electronics themselves [43]. Read noise can vary across the 

CCD so it is difficult to quantify it without measuring [3]. 

As temperature increases in the CCD material there is an increasing probability 

that valence electrons are freed causing electrons in addition to the source to be read from 

the pixels, this is called dark current [44]. One technique to limit the dark current noise is 
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to cool the CCD [43], the lower the temperature the lower probability electrons will 

separate. Another method to limit the effects of dark current is to operate the pixels close 

to full well capacity; this method will also limit the effects of read noise [2]. Each pixel 

only has a certain amount of electrons that can be excited by photons at any given 

moment, the well capacity, so if the pixel is operated near its well capacity there are a 

limited number of electrons that remain to be freed by high temperatures and from read 

errors. Each method is used by Kepler [3]. Dark current and read noise can be formulated 

in a similar manner to shot noise in the sense the noise represents the collection of 

unwanted electrons over the total signal: 

 
read noise

dark current
dark noise

reade
S

e
S

σ

σ

−

−

=

=
  (27) 

b. Pointing Noise 

The third aspect of instrument noise is pointing noise, which is a combination of 

spacecraft jitter and drift. Both can be described as “the movement of the telescope line 

of sight, (LOS), over time” [3] and both effects are functions of the spacecraft attitude 

determination and control system (ADCS). Jitter refers to the relatively high frequency 

LOS movement whereas drift is low-frequency movement. A simple analogy to explain 

the difference is if a person has a laser pointer pointing at the center of an apple, jitter 

would be the tiny movements of the laser due to the unsteadiness of the person’s hand 

around the center of the apple, whereas drift would be if the laser pointer starts moving 

away from the center of the apple and keeps moving. Jitter noise can be accounted for in 

the PRF, which as explained above, is true in the case of Kepler [3]. 

To obtain an accurate calculation of pointing noise, numerical simulations are 

required, which take into account how the incident energy is distributed across the pixels, 

for example the Airy disk described above. However, for this thesis a first-order 

approximation is sufficient. Therefore, similar to the other noise sources described above 

the pointing noise due to drift can be formulated as some error over the total. Unlike the 

other noises, which occur due to unwanted electrons, the noise due to drift results in the 
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loss of the ability to collect elecu·ons. The pointing noise is the ratio of the lost signal 

S1ost to the original signalS0 [37]: 

(j . . . = slost 
pollllmg, noiSe S 

0 

(28) 

As an example, in Figure 19. , the pixel (outlined m blue) has a unifonn 

disu·ibution of elecu·ons (shaded in gray). Although it was explained above that the actual 

disu·ibution of electrons is not unifonn, if one examines Figure 18. closely, it is apparent 

that most of the energy is concentrated in a small region, with a shaip drop-off outside of 

the pixel size of about 27 Jlm. This justifies the lmif01m distribution assumption. 

" z ,., 
X 

Figure 19. Image centered on pixel 

There are three directions that the system can drift caused by rotation of the 

spacecraft; it can rotate around the y-axis and z-axis, sometimes refened to as the cross

boresight axes, and the x-axis, or about boresight axis. Based on the coordinate system 

for the pixel in Figure 19. , which is the same as for Kepler, the pointing noise can be 

analyzed in two pruis: one due to rotations about they-axis and z-axis and the second due 

to rotations about the x-axis. 

(1) Cross-boresight axes rotations. Cross-boresight axes rotations affect eve1y 

pixel regardless of its location on the CCD and will reduce the ammmt of elecu·ons that 

can be read from a specific pixeL Figure 20. is a representation of what happens to an 
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image if it is rotated by an angle ψ  around the z-axis and an angle θ around the y-axis by 

some arbitrary amount.  

ẑ
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r
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r
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Figure 20.  Rotation of pixel around z-axis and y-axis 

Defining signalρ  , as the number of electrons per square meter, the total signal can 

be redefined in terms of the electron density and the area the signal covers on a pixel, A: 

 signalS Aρ=   (29) 

Assuming zero drift around the y-axis and z-axis the signal appears as a circle on a pixel 

with area: 

 2
0A rπ=   (30) 

However, under the rotations as shown in Figure 20. , the source is distorted in the shape 

of an ellipse with a new area: 

 2 cos( ) cos( )nA rπ ψ θ=   (31) 

Figure 21.  is a depiction of the two shapes, the original circle and the ellipse caused by 

the cross-boresight rotations. 
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y 

" z 
Figure 21. Overlay of original circle with distorted ellipse 

One can then define the lost collection area, A1ost in te1m s of (30) and (31): 

Alost = Ao - A, (32) 

Finally, using (28), (29) and (32), one can estimate the pointing noise for the rotations 

depicted in Figure 20. [ 45]: 

_ S,ost _ PsignalAlost _ Ao - A, cr . . - -- - - ---=--~ 
pollliiJlg, noiSe S Ll Ll 

0 Psignal" iJ "-'0 

(33) 

fuc01porating (30) and (3 1) the pointing noise is: 

7rr2 
- 7rr2 cos (If/) cos (e) 

cr pointing, noise = 2 
7rr 

(34) 

Furthennore, if one assumes that the drift caused by the rotations around the 

y-axis and the z-axis are small due to small angles of rotation and r ~If/ ~ e one could 

use a Taylor expansion on (34) and ignore higher order te1ms, O(x2
) and above to get: 

cr pointing, noise = 1-cos( If/) cos( 8) = 1- cos2 (r) 
r << 1 (35) 

4 

:. cr . . . :::::1 -1 + y2 +L+O(y6 ):::::0 pollllmg, n01se 
3 

Two important conclusions come from the analysis of pointing noise due to the 

rotations armmd the y-axis and z-axis: (1) the original signal strength does not matter, it is 

the area that the electrons are distributed over that matters (2) if the rotations are small 

then there is no significant pointing noise introduced due to these rotations. Two possible 
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sources of error in this analysis are: large rotations and pixel spreading. If the rotations 

are large then it is possible that pointing noise around the y-axis and z-axis becomes 

significant because small angle approximations are invalid. Furthermore, this analysis 

examined the image spread out over one pixel, while it would not make a difference in 

the analysis if the electrons were spread out over many pixels, it would make the 

simplification of assuming the distribution is circular less plausible, once again requiring 

numerical analysis for a more accurate solution.  

The first examination treated the cross-boresight maneuvers as a titling effect, 

which is a valid approximation if the CCD is near the mirror. However, in the case of 

Kepler, as shown in Figure 22. , the CCD is separated from the primary mirror by the 

effective focal length, f. 

 
Figure 22.  Kepler photometer, after [3] 

The distance between the CCD and the primary mirror cause a moment arm effect 

that leads to a pixel motion that is more drastic than the tilting loss described above. 

Because of the moment arm it is more correct to assume that if the spacecraft rotates by 
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!llf/ armmd the z-axis and !1 (} around the y-axis then the image will be shifted by some 

ammmt !ly and !lz as depicted in Figure 23 .. 

y 

" z 

~y 

J2 

Figure 23. Estimating Azost due to cross-boresight axis rotations 

Similar to before, the desire is to detennine the ratio of A1ost to A0. It is simple to 

solve for Ao, however accurately calculating A zost is more complicated and requires 

calculus or numerical simulations, which is not desirable for this first-order 

approximation. Therefore, a simpler approximation for estimating the loss is to inscribe 

circles in the sectors of the image that exit the pixel, as shown in Figure 23. . It is 

assumed that/1¢ << 1 and tllf/ << 1, so the effects of the rotations can be u·eated as a 

linear shift of the pixel. It is expected that the first order approximation will be 

conservative because of the lmif01m distr-ibution assumption and software tools that 

reduce the effects of pointing noise are being ignored [ 46] . Therefore, the smaller area of 

the two circles compared to the entire shifted segment should reduce the expected over 

estimation. 
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Using Figure 23.  the lost area is: 

 
2 2 2 2

2 2
42 2 2 2lost

y z y zA π ππ π∆ ∆ ∆ + ∆   = + =   
   

 (36) 

In this thesis it is desired to work with rotation angles instead of distances 

therefore, it is necessary to relate y∆ and z∆  to their respective rotations θ∆  and ψ∆ . 

Before doing that it is useful to calculate the size of a science pixel in terms of rotation 

angles, specifically arcsec. The geometry of Figure 24.  is used to calculate this value; 

Figure 24.  is a simple representation of a telescope, but not to scale, where f , is the 

focal length, l, is the length of a pixel and β is the angle that will define the dimension of 

the pixel in arcsec. 

 
Figure 24.  Simple representation of a telescope, (not to scale) 

Using simple trigonometry β can be solved for by: 
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l
f

β  = 
 

 (37) 

Since pixels are typically on the micrometer scale it is assumed that the / 2 1β <<  so β in 

radians is: 

 tan
2 2

l
f

β β β  ≈ ∴ = 
 

  (38) 

Based on convention, β is in arcsec, l is in μm and f, is in mm as in: 

 ( )(arc-sec)=206.26
( )

l m
f mm
mβ  (39) 

A similar technique and similar figure can be used to relate y∆  and z∆  to θ∆  

and ψ∆ . To simplify the explanation it will be assumed that θ ψ∆ = ∆ , which also 

implies that y z∆ = ∆ , so the equation for the lost area becomes: 

 
2 2 2

4 2lost
y z yA π π π∆ + ∆ ∆

= =  (40) 

Figure 25.  is a depiction of the shifted image on a pixel that can be used to solve 

for y∆ in terms of the rotation θ∆ .  
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Figure 25. Solving for ily , (not to scale) 

Using a similar process as before when solving for /, one can solve for L1y : 

tan ( /3 + ile) = (
11 2 + ily) =-

1
-+ L1y 

2 f 2f f 

f3 +L18 << 1:. tan ( /3 +L18) ::::; f3 +L18 
2 2 2 

f3 +L18=-l-+ ily 

(41) 

2 2/ f 

f3 = .!_ :. L18(arcsec) = 206.26 ily(Jlm) 
f f(mm) 

It is important to note that the although rotation is defined from the center of mass 

of the spacecraft, different components of the spacecraft, for example the primruy minor 

will be rotated by the same angle. Using the relationship derived in (41), (40) thus 

becomes: 
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2 2 206.26lost
y fA π π θ∆ ∆ = =  

 
 (42) 

The original area can be defined in terms of the angular pixel length. If the radius 

of the original circle is defined as half the length of a pixel, l, used in Figure 24. , the 

original area is:  

 ( )2 2

0 4 4 206.26
l fA

π π β = =  
 

  (43) 

Finally, the first-order approximation pointing noise due to cross-boresight axes 

rotation defined in (33) is: 

 

2

2

pointing, noise 2 2
0

22 206.26

4 206.26

signal lost

signal

f
A
A f

π θ
ρ θσ
ρ βπ β

∆ 
  ∆ = = =
 
 
 

  (44) 

(2) Effects of about boresight axis rotations. There is one more type of 

rotation to consider and that is about boresight axis, rotations around the x-axis. In order 

to understand this, Figure 26.  shows a different perspective of a signal on a given pixel. 

This diagram shows the line, d, the distance from the center of the focal plane array to the 

center of the pixel of interest. The gray circle is the signal to be read. 

 
Figure 26.  Image centered on a pixel away from the center of the focal plane 

array 
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If the CCD is rotated by some φ∆ , as shown in Figure 27. , around the x-axis, 

then the center of the source will change. For actual systems, even if d=0, meaning the 

pixel center is at the center of the focal plane array, the rotation would create some noise 

due to the intra-pixel interactions, but for this first-order approximation those interactions 

are ignored, and d>0.  

 
Figure 27.  Image shifted after rotation of φ∆  

As shown in Figure 28. , the lost area is very similar to that due to the cross-

boresight rotations, therefore the same approximation technique of inscribing two circles 

is used. 
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Figure 28. Visualization of A 1ost 

Using Figure 27. , the lost area is: 

(45) 

Similarly to the approximation developed for cross-boresight it is useful to 

detennine the relationship between !:J.r and 11¢, which can be accomplished by using 

Figure 27 .. 

11¢( arc sec) 
11r(Jlm) = d(mm) ----'-..:....._-~ 

206.26 
(46) 

where the factor of 206.26 convelis mm-arcsec into Jlm-rad. Therefore, the area lost due 

to about boresight axis rotations is: 

7rl1r2 1i ( d !1¢ )2 
~ost = - 2- = 2 206.26 (47) 

Using the original collection area, derived in ( 43), the first-order approximation 

pointing noise due to the about boresight axis rotation defined in (33) becomes: 

1i ( d/1¢ )2 
_ Psigna/A iost _ 2 206.26 _ 2(d11¢)

2 

a . . . - - - ----'---+-
pomtmg, no!Se Psigna/ Ao 1i ( J f3 )2 (J /3)2 

4 206.26 

(48) 
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(3) Comparing cross-boresight and about boresight losses. Two equations for 

pointing loss have been derived, one due to cross-boresight axes rotations and the other 

due to about boresight axis rotations. For small rotations, the cross-boresight axes and 

about boresight axis pointing noises can be superposed so the first order approximation of 

the total pointing noise is: 

 
22

pointing noise 2

2 2 d
f

θ φσ
β β

 ∆ ∆
= +  

 
 (49) 

It is beneficial to compare, how the two forms of pointing noise are related. The 

pointing noise contribution from the cross-boresight axes rotations and about boresight 

axis rotations can be compared by: 
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2
pointing noise, cross

2
pointing noise, around

2

2

f
dd

f
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σ β θη
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 ∆
   ∆ = = =  ∆  ∆
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Using 1399.20f mm= , and 150d mm=  [47], which is approximately the farthest 

distance that a pixel could be from the center of the focal plane and assuming that 

θ φ∆ = ∆ , the ratio, η, between the two pointing noises is: 

 
21399.20 87

150
η  = = 

 
 (51) 

Assuming the pointing errors are the same around all three axes, the pointing noise due to 

cross-boresight axes rotations is almost two orders of magnitude greater than the pointing 

noise from the about bore-sight axis rotations. 

As shown in (51) if the rotations around all three axes are of the same order of 

magnitude the cross-boresight axes pointing noise is much greater, so with a fully 

functioning control system only the first term of (49) would provide a significant 

contribution. 

It is important to emphasize the limitations of this approximation. It ignores intra-

pixel and inter-pixel issues captured by the PRF, it simplifies the calculation of the loss in 

area, it assumes that the source spreads evenly and like a circle and it ignores the size of 

the pixel mask (the amount of pixels that the signal is spread over). The first limitation 
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may underestimate the error; extra losses may exist due to the interactions. The other 

limitations may overestimate the error. The assumption that the source spreads evenly 

ignores the fact that the outer concentration of electrons is actually lower than in the 

center of the real distribution of electrons. Furthermore, only examining the noise over 

one pixel implies that if the rotations are large enough the signal would be completely 

lost and this simplification also ignores the fact that the PSF can be spread out over many 

pixels. In fact for Kepler the PSF was designed to have ~95% of the signal strength 

spread over at most a pixel mask of 7x7 pixels [3]. The size of the pixel mask was 

ignored because it adds another level of complication, which cannot be accounted for 

without a simulation. Small drifts may actually have a much lower loss of electrons than 

predicted. This first-order approximation can provide an idea of the system’s 

performance, but to truly understand the effects of motion, numerical analysis with the 

PSF and PRF is ultimately required. 

c. Summary 

Combining the read, dark current and pointing noise together provides:  

 
22 2 22

2 2 2 2 dark current
instrument, noise read, noise dark, noise pointing, noise 2

2 2reade e d
S S f

θ φσ σ σ σ
β β

− −       ∆ ∆
= + + = + + +      

       
 (52) 

D. ANALYSIS OF KEPLER’S NOISE FLOOR 

The first section of this chapter outlined the required design SNR and transit 

depth signal. The next sections discuss the signal and noise from the target star and the 

spacecraft pointing system. The following sections will utilize the developed equations to 

examine three different cases of Kepler: (1) Kepler’s original mission, (2) original 

estimates of Kepler’s ADCS degradation (3) K2 mission. This chapter will conclude with 

an exploration of the science capabilities for the first and third cases. 

1. Case 1: Original Kepler Mission 

The original Kepler mission can be examined based on the design requirements of 

Kepler. This ensures that the above equations, especially the approximation for pointing 

noise provide the expected results of around 20ppm for noise and a total SNR of at least 4 
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for an Earth-size planet in an Earth-like orbit around a Sun-like, G2V star, with a 

magnitude of 12.  

a. Signal 

Using the knowledge of a twelfth magnitude G2V star as the design standard (23) 

and the average transit of a planet of 6.5 hours [3] the number of electrons expected to be 

read by a pixel mask is: 
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b. Shot Noise 

The shot noise for this star can be calculated using (25): 

 5
shot noise 9

1 1 1.4 10
4.9 10S

σ −= = = ×
×

  (54) 

c. Stellar Variability 

As stated previously, stellar variability for every target star is unknown. 

Therefore, in the planning stages a constant value of 10 ppm for stellar variability is used 

[3]:  

 5
stellar variability 1 10σ −= ×   (55) 

d. Read Noise 

Read noise described above is a function of the operation of the CCD and as 

recently as 1996 there was no concern that read noise would be large enough to have an 

impact on the overall SNR [5]. Invariably, CCD technology has improved since that time, 

but for a conservative estimate this thesis will use the original design value of 1626 e-/hr 

[5] making read noise: 
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e. Dark Noise 

Similar to read noise this thesis will use the estimate of dark current provided 

during the design of the Kepler mission of about 1880 e-/hr making [5] dark current 

noise: 

 6
dark noise 9

1880 (6.5 )
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e
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×
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f. Pointing Noise and Pointing Requirements 

The final component, before solving for the expected photometric precision for 

the original Kepler mission, is the pointing noise. So far it has been explained that the 

read noise and dark current contribute negligently to the noise floor due to careful CCD 

design. Similarly the pointing noise is within the control of the designers so the goal was 

to make the pointing noise negligible a well. A good way to do this would plan on the 

pointing noise being around one order of magnitude lower than the final desired 

photometric precision. Therefore, the design value of 6
poinintg noise 5.0 10σ −< ×  [5] was 

used. 

Since the pointing noise has a direct impact on the pointing requirements one 

could use (49) to obtain an idea of the allowed maximum pointing error. Using (49) the 

first order approximation maximum allowed pointing error is: 

 
( )

2 2
6 max max

max22

2 25 10 .006 sec
3.98 sec

arc
arc

θ θ θ
β

− ∆ ∆
× = = ∴∆ ≈   (58) 

In addition to obtaining this estimate it is possible to confirm the validity of this 

estimate and (49) by comparing it to the actual pointing accuracy design requirements of 

Kepler. The pointing accuracy requirement is to maintain pointing to be better than 0.009 

arcsec, 3σ on the order of 30 minutes corresponding to the LC time [48]. The time scale 

for the pointing accuracy is 30 minutes instead of the 6.5 hours used throughout the rest 
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of this example. The explanation is that the 6.5 hours consists of 13 LCs, at the end of 

each LC the satellite can be slightly adjusted to ensure the target stars are on the original 

pixels, which reduces some of the expected noise effects due to pointing error. 

Alternatively the signal could be read from another set of pixels. Also as explained in the 

introduction after 30min an LC is read, so for pointing purposes the measurements are 

over until the next LC. In addition, using the first-order approximation level the signal 

strength does not have an effect, so the only concern is the total expected drift per 

integration, which is the time of the LC. Therefore, it is sufficient to quantify the pointing 

accuracy per LC. When one compares the calculated pointing accuracy from (58) to the 

actual pointing requirement the results are:  

 max calculated .006 sec 2
.009 sec 3actual

arc
arc

θ
θ

∆
= =

∆
  (59) 

First the comparison show that the first-order approximation is the same order of 

magnitude, milliarcsec, and second it is within 33% of the actual requirement. This 

means that even by simplifying the pointing noise to a geometrical calculation and 

ignoring the PRF and PSF one can have a good idea of what pointing stability is required 

to achieve a certain pointing noise. 

g. Total Noise and SNR 

The noise values calculated above provide a total noise of: 

 ( ) ( ) ( ) ( ) ( )2 2 2 2 25 5 6 6 6
total noise 1.4 10 1.0 10 2.5 10 2.2 10 5.0 10 18 ppmσ − − − − −= × + × + × + × + × =   (60) 

This is reasonable; as it is about the 20ppm design value. Assuming a signal equal to the 

transit depth of Earth the SNR is: 

 84 4.7
18

ppmSNR
ppm

= =   (61) 

This value is close to the expected SNR of 4 discussed previously. However, it is a bit 

higher. 
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h. Summary 

This example provided several useful takeaways. It demonstrated how the noise 

calculations were used and identified baseline values for stellar variability, read and dark 

current noise that will be used for the next two cases. It also validated the first-order 

approximation for the pointing noise and provided an improvement on that 

approximation. It also proved that it is possible to achieve the necessary SNR=4 to detect 

an Earth-like planet in an Earth-like orbit around a Sun-size star. Using the method above 

it is possible to calculate the ability to detect other size planets around other size stars 

with different pointing accuracies. 

2. Case 2: Original Estimates of ADCS Degradation 

As stated previously, the original Kepler mission was deemed to be no longer 

possible due to the failure of two out of the original four reaction wheels. This failure 

reduced the pointing accuracy that was achievable with the Kepler spacecraft, increasing 

the pointing noise and removing the ability to conduct the original Kepler mission. This 

case will demonstrate a reason why the original Kepler mission was deemed no longer 

viable based on the original estimates of ADCS degradation.  

For this explanation the same target star, one with a magnitude of 12 was used, as 

in the original Kepler mission. The signal from the star and the noise values except for 

pointing noise are in Table 2.  . Although not an exact comparison to Case 1 this case will 

be examined using a time scale of one minute. The original predicted values of the 

reduced drift were about one arcsec/min [14] and as will be shown, one arcsec over a 

minute will provide a pointing noise high enough to ruin the mission. 
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Table 2.   Case 2: signal and noise values for 12th magnitude star 

Star Signal (e-) 1.3x107 

Shot Noise 2.8x10–4 

Stellar Variability 1.0x10–5 

Read Noise 2.2x10–6 

Dark Noise 2.5x10–6 

 

In Table 2.  , as expected, the star signal decreased because the time was less than 

the original mission and subsequently the shot noise increased. The read noise and dark 

noise remain the same since both the signal and the amount of extra elections were scaled 

by the same factor, canceling the change. As mentioned previously the stellar variability 

is assumed constant at 10 ppm. 

The only component left to evaluate before calculating the total noise is the 

pointing noise. In the original Kepler mission the ADCS was able to control all three axes 

to an accuracy of <0.009 arcsec, however now with the two failed wheels it is only 

possible to control rotations around two axes to that type of accuracy [13]. As will be 

explained in a later chapter, the wheels will control rotations around the z-axis and one 

other axis. The contribution to pointing noise due to cross-boresight rotations is so much 

worse than the contribution due to about boresight axis pointing noise, so it was decided 

to also control rotations about the y-axis [13]. The new pointing estimates of 1 arcsec will 

be assumed to be the pointing stability about the x-axis and 0.009 arcsec will be used for 

the y-axis and z-axis. Using (49) the first order approximation pointing noise is 

 ( )
( )

( )
( )

2 2
3

pointing noise 2 2

2 (150 )1 sec 2 .009 sec
1.5 10

(1399.20)3.98 sec 3.98 sec
mm arc arc

arc arc
σ −= + = ×   (62) 

This approximation provides a result close to the original predicted estimate of 

NASA of a pointing noise of about 1000ppm for the degraded pointing system [14]. This 

calculated value is within 50% of the estimate from NASA, which is satisfactory and not 

surprisingly worse than the 30% difference between actual and estimated from Case 1. As 
 58 



the drift gets worse the limitations of the simplifications that went into developing (48), 

that were accounted for in [14], will become more exaggerated. Similar to the original 

Kepler estimate, the approximation is not exact but it provides an ability to understand 

the impact of degraded pointing noise on the original mission.  

The new pointing noise value is much larger than the noise from the other 

components so one can ignore the other components of noise and assume the total noise 

is roughly equivalent to the pointing noise. The total noise for a twelfth magnitude G2V 

star then is about 1500ppm, which would provide an SNR of 0.056. It is clear that 

continuing the original mission is not feasible since the noise is greater than the desired 

detection signal. This value is only for a one minute time frame, which means it would 

expectedly be significantly worse for the 30min LC co-added to the 6.5hr transit used in 

Case 1. 

3. Case 3: The K2 Mission 

After different unique engineering solutions were implemented, the pointing 

accuracy could be improved to approximately 10arcsec over a period of 8 hours [13]. 

This is about 0.63arcsec of drift per each 30min LC. Similar to the previous two cases 

this case will be examined using a twelfth magnitude star. However, this case, like Case 

1, will return to the original 6.5hr timeline, while using the 30min drift value. Table 3.   

lists the signal and noise values, including the effects of the 0.63arcsec pointing error. 

Table 3.   Case 3: signal and noise values for 12th magnitude star 

Star Signal (e-) 4.9x109 

Shot Noise 1.4x10–5 

Stellar Variability 1.0x10–5 

Read Noise 2.2x10–6 

Dark Noise 2.5x10–6 

Pointing Noise 5.8x10–4 

Total Noise 5.8x10–4 
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As expected, the values for all sources except the pointing noise and total noise 

match the results from Case 1. Similar to Case 2, the pointing noise dominates the other 

noise values so the total noise is essentially pointing noise. The pointing noise, although 

better than Case 2, is still much worse than Case 1, and is greater than the 84 ppm transit 

depth of an Earth-like planet giving SNR of 0.15. It is once again clear from this simple 

approximation that the original science is not feasible. 

E. SMALLEST DETECTABLE PLANET 

The analysis above focused on the original design target star of twelfth 

magnitude. In addition, it used the first-order approximation to analyze the ability to 

conduct the desired mission, which at least in Case 1 and Case 2 had actual values to 

compare the results to, providing confidence in the approximation. In addition to 

examining the state of Kepler for the design star there are at least two more interesting 

aspects to explore using the method described above: (1) a comparison of the ability to 

detect planets and (2) a comparison of photometric precision to actual data.  

The comparison of the ability to detect planets will still assume the star is about 

the same size as the Sun but could have a magnitude ranging from 12 to 16.5. The goal is 

to determine what the planet size in Earth radii needs to be to ensure the SNR is 4.0 or 

greater. The pointing noise will be based on the information outlined in Case 1 and 3, 

corresponding to an accuracy of 0.009 arcsec for Case 1, and 0.63 arcsec for Case 3. Case 

2 will not be in this comparison because the accuracy over 30 minutes is so poor it would 

provide significantly different results than the other 2 cases and not provide any useful 

information. The results are shown in Figure 29. . 
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Figure 29.  Planet detection ability for different drift rates per LC 

As designed, Case 1 for a twelfth magnitude star allows for the detection of a 

planet equivalent to about 1R⊕  with an SNR of 4. Also, as the magnitude increases, the 

star appears dimmer, so fewer electrons are read for that star and the minimum size of a 

detectable planet steadily increases to about 3.5R⊕  when the magnitude is >16. Case 3, 

using the first-order approximation, predicts that at best a planet with a radius around 

5.1R⊕  can be detected with an SNR of 4. However, unlike the steady increase in Case 1, 

the size of the detectable planet is about the same until the Kepler magnitude increases 

beyond 15.5; this is because the estimated pointing noise is so great that all other noise is 

negligible in comparison until the star dims significantly. 

As shown above, it is possible to predict expected science capability using the 

pointing noise approximation, but the question remains how well the analysis compares 

to actual data. Figure 30.  is a plot of the predicted photometric precision values using the 

equations provided in this thesis for Case 1 and Case 3 overlaid with actual Kepler and 

K2 data obtained from [46]. The red circles represent data from when Kepler had three 
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functioning wheels and were carefully selected G type stars [ 46] . The green circles are 

from the K2 mission using two-wheels and coarse pointing, but for stars of unknown 

variability and class. The blue data points are also from K2, but are based on fine 

pointing results, which use optimized ape1tures [ 46]. The difference between coarse 

pointing and fme pointing precision has to do with the use of the FGS . 
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Figure 30. Predicted photometric precision vs. actual data, after [ 46] 

16.5 

Case 1, as expected, closely follows the empirical data for the G type stars from 

the original Kepler mission. There is a slight deviation that occurs as the magnitude 

increases, which could be due to several factors including a difference in stellar 

variability or differences between the approximation and actual noise values increase as 

the star dims. Case 3 on the other hand does not closely con elate to the K2 empirical 

data. This is not too smp rising; the data from the K2 mission were carefully selected and 

included software improvements that reduced the effects of pointing noise [ 46] . 

62 



Furthermore, the fine pointing targets were read using different optimized apertures [46], 

which put into question the simplification made here that removed the need for the pixel 

mask. There are improvements to the data processing, mainly functions of software that 

cannot be accounted for in the geometrical approximation for pointing noise provided 

above. This emphasizes the limited scope of this approximation. However, the results are 

satisfactory in the sense that they provide an estimate of an upper bound of possible 

science that can be performed by the K2 mission.  

F. SUMMARY 

This chapter outlined the requirements driving the design of Kepler. It also 

explored the effects of the degradation in pointing accuracy due to reaction wheel failure. 

It demonstrated the loss of ability of possible science that occurred from Kepler to K2. 

The reaction wheels were installed to provide accurate pointing capabilities and pointing 

precision. The next chapter will discuss the physics of solar torque, which is the main 

factor that limits pointing accuracy and precision achievable with the two remaining 

reaction wheels. 
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V. SOLAR TORQUE ON SPACECRAFT 

This chapter begins with a brief outline of torque and space environment 

disturbances. These two topics are just an introduction to the main purpose of this 

chapter, which is to describe the physics behind solar torque disturbances on spacecraft. 

A. TORQUE 

Torque is a phenomenon caused by the application of a force on an object offset 

from a fixed point of rotation, in an environment like space, offset from an object center 

of gravity. The application of a force will induce a rotation dependent upon the direction 

of the force and the perpendicular “moment arm.” Mathematically, torque is defined as: 

 T r F= ×
    (63) 

By convention, a counter-clockwise torque is defined as a positive torque, while a 

clockwise torque is negative as depicted in Figure 31. . 

 
Figure 31.  Example of force inducing a counter-clockwise torque 

B. SPACE ENVIRONMENTAL DISTURBANCE TORQUE 

Every spacecraft is subject to any combination of several environmental 

disturbances that can induce a torque about the spacecraft body. As shown in Figure 32. , 

the environmental disturbances are: (1) solar radiation pressure, (2) atmospheric drag, (3) 

magnetic field torque, (4) gravity gradient.  
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Figure 32.  Effects of major environmental disturbance torques on spacecraft, 

from [49] 

As Figure 32.  shows, the dominant environmental disturbance torque important 

to spacecraft not in the vicinity of any large celestial body is the torque due to solar 

radiation pressure. Due to its orbit this is the only environmental disturbance torque 

relevant to the Kepler spacecraft [13]. 
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C. RADIATION DISTURBANCE TORQUE 

As Spence explains, “radiation incident on a spacecraft’s surface produces a force 

which results in a torque about the spacecraft’s center of mass” [50]. For Kepler, this 

incident radiation can come from direct solar photon radiation, referred to as solar 

radiation pressure above, and radiation from the spacecraft itself. In general, the torque 

due to the solar radiation pressure is at least an order of magnitude larger [51], so solar 

torque effects will be the main focus of this thesis. 

1. Force Due to Electromagnetic Radiation 

According to classical electricity and magnetism theory, when electromagnetic 

radiation impinges on an object the radiation is scattered “due to the combined effects of 

all the electrons” [52]. There are three predictions based on this explanation of scattering 

that did not coincide with experiment:  

[one] that the energy scattered by an electron traversed by an X-ray beam 
of unit intensity is the same whatever may be the wave-length of the 
incident rays… [two] when the X-rays traverse a thin layer of matter, the 
intensity of the scattered radiation on the two sides of the layer should be 
the same… [three] only a small part, if any, of the secondary X-radiation 
is of the same wave-length as the primary. [52] 

Because experiments failed to confirm these predictions Arthur H. Compton 

realized that the classical explanation was insufficient and offered a quantum mechanics 

vie on radiation scattering [52]. Compton proposed treating the electromagnetic quanta, 

commonly referred to as photons, as completely interacting with one electron, vice 

examining their effect based on interactions with all the electrons. This interaction is 

shown in Figure 33. . 

 
 67 



Figure 33.  Schematic of Compton scattering.  

Figure 33.  shows the photon, γ, representing the electromagnetic energy, 

interacting with a single electron, e-. This interaction can be examined based on the 

conservation of energy, E, and the conservation of momentum, p: 
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The photon, has a momentum and energy dependent on wavelength, λ:  

 

hcE

hp

λ

λ

=

=
  (65) 

where h, is Planck’s constant, and c, is the speed of light.  

When the photon interacts with the electron it transfers some momentum and 

energy to the electron. Since the photon loses momentum and energy to the electron 

based on (65) the wavelength of the photon must also change so Compton’s theory 

explains why the secondary radiation is of a different wavelength then the primary. 

Compton’s theory also explains the other two problems mentioned above [52], 

however, for the purposes of this thesis that part of the analysis by Compton is not 

relevant so it will not be discussed here. 

Compton’s theory showed that a change in momentum occurs due to the 

interaction between a photon and electron. In addition, it is known that a change in 

momentum means a force is exerted on an object: 

 dpF
dt

=   (66) 

where F is the force exerted on an object and dp
dt

 is the change in momentum per unit 

time. 
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Combining these two ideas, it can be deduced that a force is induced on an 

electron due to the change in momentum, however here it is of interest to determine the 

force produced by many photons incident on a surface, which has many electrons. This 

requires the ability to calculate the force due to the combination of many photons from a 

single source, for example the Sun. 

2. Irradiance of Sun 

The first step to calculate the force is to determine the irradiance of the Sun. The 

irradiance captures information based on all the photons emitted by a source so it will 

allow the force due to many photons to be calculated. 

It is a good approximation to model the Sun as a blackbody [53]. Based on this 

assumption if one knows the temperature of the Sun, it is possible to determine the Sun’s 

irradiance based on blackbody radiation theory. 

The spectral irradiance is defined as:  

 
2

5

8 1( , )
1

hc
kT

hcI T
e λ

πλ
λ

=
−

 (67) 

where I is the power per area per wavelength, with SI units of W/m3, h is Planck’s 

constant, λ  is the wavelength, c is the speed of light, k is Boltzmann’s constant and T is 

the temperature. 

For a blackbody (67) can be integrated over all wavelengths to derive an equation 

for irradiance, L, solely dependent on temperature [53]: 
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The constants in (68) are commonly combined and referred to as Stefan-

Boltzmann’s constant: 

 
5 4

8
3 2 2 4

2 5.67 10
15

k W
h c m K
πσ −= ≈ ×  (69) 

Using (69), (68) can be written in the more compact form of: 

 4( )L T Tσ=  (70) 
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Throughout many years of observation and measurement the Sun’s surface temperature 

has been measured to be about 5778K [28]. 

Using the knowledge that electromagnetic radiation is an inverse square law it is 

possible to determine the irradiance of the Sun at the orbit of the Earth, which roughly 

corresponds to the same orbit as Kepler as shown in (71).  

 
2

2 2

( )( ) 1367Sun Sun
Earth

Sun Earth

L T r WL T
d m−

= ≈  (71) 

If the irradiance of the Sun at the Earth can be converted into a pressure then one 

can calculate the resultant force acting on an object such as a solar panel. The advantage 

of solving for pressure is it maintains the ability to examine any arbitrary surface. The 

two important relationships necessary for this analysis are the relationships between 

work, W, force, F and velocity, v, and force and pressure, P, as shown in (72) and (73). 

 W F v= ⋅  (72) 

 F PA=   (73) 

If (71) is redefined, in terms of work, the solar radiation pressure at the Earth’s 

orbit can be solved. This is approximately the same as the radiation pressure at Kepler’s 

orbit as shown in (74). The computation requires dividing the irradiance by the speed of 

light.  
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  (74) 

Utilizing the results of (74), it is possible to find the force on any arbitrary surface 

area in an orbit at the distance of the Earth from the Sun. This is possible by using the 

pressure and treating it as if it acts at an average point called the center of pressure. The 

center of pressure corresponds to the centroid of the surface area. 

3. Force from Direct Solar Photon Radiation 

The relationship between solar radiation pressure and force as defined in (73), is a 

simplification. In reality the angle between the surface and incident photons is important 
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as well as the surface’s material properties. Due to the material properties “the [solar 

photon radiation] forces may be modeled adequately by assuming that incident radiation 

is either absorbed, reflected specularly, reflected diffusely or some combination” [51] as 

depicted in Figure 34. . 

 
Figure 34.  Depiction of the three main types of incident solar radiation effects: 

(a) absorbed radiation; (b) specularly reflected radiation; (c) diffusely 
reflected radiation, after [51] 

The forces from incident solar radiation on a small surface are due to absorption, 

specular reflection, and diffuse reflection as defined in (75) below. Important parameters 

to understand (75) are: the photon pressure, P, defined in (74), the absorption coefficient, 

αρ , the specular reflection coefficient, sρ , the diffuse reflection coefficient, dρ , the Sun 

vector, Ŝ , the vector normal to the incident surface, n̂  and an element of the area of the 

incident surface, dA.  

 2

ˆcos( )
ˆ2 cos ( ) n

2 ˆˆcos( ) n cos( )
3

s s

d d

df P SdA
df P dA

df P S dA

α αρ θ

ρ θ

ρ θ θ

= −

= −

 = − + 
 

  (75) 
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The three coefficients used in (75) must satisfy (76), which is based on the 

conservation of energy. In this description, the incident photons must be absorbed, 

specularly reflected or diffusely reflected. The three coefficients correspond to the 

percentage of photons that are either absorbed or reflected 

 1s dαρ ρ ρ+ + =   (76) 

The angle θ used in (75) is illustrated in Figure 35. . 

 

Figure 35.  Angle between Sun vector, Ŝ , and the normal, n̂ , to the surface 

The total force can be calculated by combining the three equations of (75) and 

integrating over the surface:  

 ( ) ( ) 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2
3s dF P S n S S n n n S dAαρ ρ ρ  = − ⋅ + ⋅ + +    

∫   (77) 

If the surface is a flat plate, which as will be seen later is the main component that 

is being analyzed then (77) simplifies to (78), where A is the surface area of a flat plate. If 

the surface is more complicated, further derivation is required. 

 ( ) ( ) 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ2
3s dF PA S n S S n n n Sαρ ρ ρ  = − ⋅ + ⋅ + +    

  (78) 

If the Sun vector is defined as being from the spacecraft body to the Sun then (78) 

is valid when (79) is satisfied. This is because the force only acts on one side of the plate 

corresponding to the direction of n̂ . 

 ˆ ˆ0 1S n≤ ⋅ ≤   (79) 
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4. Defining the Sun-Vector 

a. Definition Based on Direction Cosine Matrix 

fu addition to defming the force incident on the spacecraft, it is necessmy to 

defme the Sun vector. As shown in Figure 36. a reference coordinate system is chosen 

such that the y-axis always points towm·ds the Slm, regm·dless of the position of the 

satellite in the orbit. This choice is due to the heliocenu·ic orbit of Kepler, and that the 

n01mal of the main solm· panel of the spacecraft lies roughly along they-axis. 

" i z 

" FrameO A 

X 
" 0 y Frame 0 

" ,.. z 
Frame 0 

y 

Figure 36. Depiction of Frame 0 in different orientations in Kepler's 
heliocenu·ic orbit 

Using Frame 0 , as the frame of reference, one can define the Sun vector, 

throughout the orbit as: 

0 S = [0;1;0] (80) 

fu addition to defming an orbit reference frmne, a body frame, refened to as 

Frame B, needs to be defmed that will accmmt for rotations of the spacecraft, this is 

depicted in Figure 37 .. 
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Figure 37.  Definition of Frame B, centered on the spacecraft body,  
from [3] 

Next, it is necessary to define the relationship between Frame O and Frame B in 

order to convert the Sun vector defined in (80), from Frame O into Frame B. The 

relationship is based on the difference in orientation between Frame O and Frame B. The 

difference in orientation can be identified by three rotation angles:φ , the rotation angle 

around the x-axis, also referred to as elevation, θ , the rotation angle around the y-axis, 

and ψ , the rotation angle around the z-axis, also referred to as azimuth. Figure 38.  

through Figure 40.  illustrate a 1–3-2 rotation, one of several rotation schemes. A 1–3-2 

rotation consists of a rotation around the x-axis followed by a rotation around the new z-

axis and finally a rotation around the new y-axis. This rotation sequence is the rotation 

sequence used throughout the remainder of this thesis. 
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Figure 38.  First rotation - rotation by ϕ around the x-axis 

ˆ "x

ψ

ψ

ψ

φ

φ

ˆ ˆ'x x≡

ŷ
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Figure 39.  Second rotation - rotation by ψ around the z’-axis 
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Figure 40.  Third rotation— rotation by θ around the y”-axis 

Using the rotation sequence described above it is possible to derive an equation 

that will transfer the Sun vector from Frame O to Frame B: 

 2 3 1
ˆ ˆ ˆ( , , ) ( ) ( ) ( )B O O

BOS C S C C C Sθ ψ φ θ ψ φ= =  (81) 

The operators that describe the rotations are commonly referred to as Direction 

Cosine Matrices and are: 
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 (82) 

Evaluating (81) using the transformations in (82) gives: 
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Due to operational requirements of the Kepler spacecraft, its nominal orientation 

is with the x-axis in the anti-velocity direction; this can be accounted for with a rotation 

of θ π= . At this point, it will be assumed that Kepler will always point in the anti-

velocity direction, therefore, (83) can be simplified into: 

 ( )
cos( )sin( )

ˆ , cos( ) cos( )
sin( )

BS
φ ψ

ψ φ φ ψ
φ

− 
 =  
  

  (84) 

It is useful to check (84) through several simple orientations to ensure that the 

results from the equation are correct; these orientations are shown in Figure 41.  and 

described in Table 4.  . As Table 4.   shows, the results from (84) matches the predicted 

values.  
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Figure 41.  Validation rotations 
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Table 4. Analysis of the different orientations in Figure 3.4 

Position (8 , tp ,¢) Predicted Sun o"' B"' 

vector in body 
s S based on (84) 

fi:ame based on 
Figure 41. 

I (7l',0,0) [0;1 ;0] [0;1;0] [0; 1 ;0] 

II ( 7l', - .1l' I 2,0) [1;0;0] [0;1;0] [1 ;0;0] 

III ( 7l',7l' I 2,7l' I 2) [0;0; 1] [0;1;0] [0;0; 1] 

IV (7l',0, - 7l' 12) [0;0;-1] [0;1;0] [0;0;-1] 

b. Definition Based on Trigonometry 

An altem ative method of deriving an equation for the Sun vector removes the 

need for an orbit fi:ame; all that is required is the Slm vector, the angle between the y-z 

plane and the Sun-Vector, 1f1 , and the angle from the x-y plane to the Sun-Vector, ¢, 

with both angles being positive in the cmmter-clockwise direction. The equation for the 

Slm-Vector can be derived through trigonometry based on Figure 42 .. 

A 

X 

Figure 42. 
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Trigonometric derivation of the Sun vector 
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The Sun vector in the body fixed frame: 

[

cos(¢) sin( -'If)] [ - cos(¢) sin( 'I/)] 
S('!f,¢) = cos(¢)cos(- 'l/) = cos(¢)cos('l/) 

sin(¢) sin(¢) 

(85) 

Equation (85) can be checked in two ways: first under the condition that 

('I/,¢) = (0, 0) the expectation is that S = [0; 1; 0] , shown in (86) and under the same test 

rotations as before shown in Figure 43. , with the results in Table 5. 

[

- cos(O) sin(O)] [OJ 
S(O, 0) = cos(O) cos(O) = 1 

sin(O) 0 

(86) 

" X 

IV II 

"' z 
"' 

I 
y 

"' z 
" v 

Figure 43. Different test orientations 
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Table 5. Analysis of the different orientations in Figure 3.4 

Position (f//,¢) Expected Soo ..... s based on (85) vector in body 
frame based on 
Fig. IV.8 

I (0, 0) [0; 1 ;0] [0; 1 ;0] 

II ( - JZ' / 2,0) [1 ;0;0] [1;0;0] 

III ( .1Z' I 2,7Z' I 2) [0;0; 1] [0;0; 1] 

IV (0, - JZ' / 2) [0;0;-1] [0;0;-1] 

Equation (86) and Table 5. confnm that this derivation will also produce conect 

results for defining the Slm-Vector with regards to the spacecraft body fixed frame. 

c. Comparison between Sun-Vector Based on DCM and Trigonometry 

It is clear that both (84) and (85) are the same equation and will produce the same 

results, however the Direction Cosine Mau·ix derivation provides for more flexibility; if 

desired it is possible to include the third rotation about they-axis and use (83) . However, 

due to the need to ilhuninate the solar panels the spacecraft should be limited in its 

rotation angles armmd they-axis. Therefore, ooless stated othe1wise the Soo-Vector will 

be defined using (84), will be represented only by 1f1 and ¢ , and in the text will be 

displayed with this notation, (If/,¢) . 

5. Moment Arm 

One more piece of inf01m ation needed to calculate the radiation disturbance 

torque is the moment rum. This is defined as the difference between the vector that 

defines the center of pressure, Cp and the center of mass, Cm 

(87) 

6. Solar Torque 

Evaluating (63) using (78) and (87) allows the solru· torque disturbance to be 

computed for a flat plate as: 
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 ( ) 2ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ) 2 ( )
3p g s dT c c PA S n S S n n n Sαρ ρ ρ  = − ×− ⋅ + ⋅ + +    

  
  (88) 

D. SUMMARY 

This chapter explained torque and space environmental disturbances experienced 

by a spacecraft. It provided a derivation of the solar torque equations including a 

definition of the Sun vector. The next chapter will develop a solar torque model for 

Kepler. 
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VI. KEPLER SOLAR RADIATION PRESSURE MODEL 

The last chapter provided the background necessary to understand solar torque. 

This chapter explains the details of a model for Kepler based on a flat plate. To do this, 

Kepler’s dimensions are first determined, followed by the development of a solar 

radiation pressure, SRP model. This chapter concludes with an analysis of the developed 

model through many different possible orientations of Kepler and compares it to other 

available solar torque data.  

A. SIZING OF KEPLER 

Before any model of Kepler can be developed, the dimensions of the spacecraft 

must be known. However, due to proprietary restrictions it was not possible to obtain a 

dimensional model of Kepler. Therefore, the relevant dimensions needed to be 

determined based on available information and drawings, such as Figure 44. . 

 

Figure 44.  Cut-away of Kepler spacecraft, from [3] 
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From Figure 44. , the primary mirror diameter is given as 1.4 m, and the flat 

Schmidt corrector has a diameter of 0.95 m. Figure 44.  is assumed to be to scale so those 

given dimensions can be used to determine several other important dimensions. The basic 

method used was to take information, like Figure 44. , import it into Microsoft Visio and 

obtain dimensions of other components that are not listed. Specifically, the Schmidt 

corrector was used as a reference because it is flat compared to the primary mirror. This 

image was imported to Microsoft Visio and a blue line was drawn from one end of the 

Schmidt corrector to the other. It measured 83.445 mm as shown in Figure 45. .  

 
Figure 45.  Image of Kepler figure in Microsoft Visio with dimensioning line, 

after [3] 

The dimension of 83.45mm is obviously not the correct size of the Schmidt 

corrector. The image needs to be scaled, so that the line drawn across the Schmidt 

corrector is equal to 0.95m. This is accomplished by the simple calculation: 

 Actual length 950scale factor= 11.39
Microsoft Visio Length 83.445

mm
mm

= ≈  (89) 
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Using the scale factor of 11.39, Figure 45. was altered so the dimensions of the 

image in Microsoft Visio are con ect; this was accomplished by multiplying the height 

and the width of the image by the scale factor. 

After scaling the image, a line was drawn along the Schmidt Conector to confnm 

that the scaling was pe1f01med conectly and that the dimension of the Schmidt conector 

in Microsoft Visio measures 0.950m. The scaled image allowed other dimensions not 

labeled in the original diagxam to be dete1mined. Figure 46. , displays the relevant 

dimensions obtained from the scaled view of Kepler. 

Figure 46. Dimensioned Kepler schematic, after [3] 

There are other dimensions not obtainable from Figure 46. that are necessruy for 

building a solru· torque model, such as the height and length of the spacecraft p01iion and 
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the dimensions of the solar panels. These other measurements can be found by using the 

same technique as described but applied to other available drawings such as the one 

shown in Figure 47. . 

 
Figure 47.  Kepler flight system, showing integrated photometer and spacecraft, 

from [3] 

The reference feature for Figure 47. , instead of being the Schmidt corrector, is 

the sum of the lines labeled as S and D, in Figure 46. , which measure 2.68 m. This is 

because this dimension appears to be the feature that is most similar between the two 

images. Using the Microsoft Visio Length of 134.08 mm, which corresponds to the 

reference line drawn on Figure 47. , the known dimension of 2.68 m, and (89) the scaling 

factor for Figure 47.  was calculated as 19.99. 

Figure 48.  is the final dimensioned model of the Kepler spacecraft using the view 

in Figure 47.  and Table 6.   lists the important dimensions and their descriptions from 

both Figure 46.  and Figure 48. . The dimensions given in Table 6.   are not exact 

dimensions; but are close approximations. This data is necessary for the next step of 

developing the SRP model of the spacecraft. In the next section a flat plate is considered 

to model the SRP. 
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Figure 48.  Second dimensioned Kepler schematic, after [3] 
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Table 6. Estimated Kepler dimensions 

Name Description Dimension (m) Somce 
s Distance from one IllllTOr to the 2.50 Figure 46. 

other 
w Width of the base of the photometer, 1.39 Figure 46. 

diameter 
Sh Height of Sun-shade 0.840 Figure 46. 
D Depth of photometer below primruy 0.180 Figure 46. 

IllllTOr 
- Schmidt Conector 0.950 Figure 46. 
S2 S+D 2.68 Figure 48. 
Bl Bus Length 1.17 Figure 48. 
Bh Bus height 0.632 Figure 48. 
Tbh Top Bus height 0.0421 Figure 48. 
Tbl Top Bus length 1.19 Figure 48. 
Gap Gap between bus and solru· panels 0.0585 Figure 48. 
Pah Solru· Panel height 3.09 Figure 48. 
Paw Solar Panel Width 0.752 Figure 48. 
Pathyp Triangle Solru· Panel hypotenuse 2.85 Figure 48. 
Patbh Triangle Solru· Panel bottom height 0.180 Figure 48. 
Patti Triangle Solru· Panel top length 0.0973 Figure 48. 

B. FLAT PLATE MODEL 

Although, the Kepler spacecraft has many smfaces with different geometries, the 

desire is to model the spacecraft for solru· torque pmposes as simply as possible. The 

simplest model that is a viable possibility is a flat plate; it is simple analytically and 

computationally and it is viable because the majority of the time the two large solru· 

panels ru·e facing the Sun. This makes the pruts of the spacecraft close to the positive y

axis face the major contributor of solru· torque. 

For a first iteration, it makes sense to make the single plate approximately as tall 

and wide as the spacecraft. Using the inf01mation from Table 6. the height of the flat 

plate is detennined as: 

h = Tbh +bh+S2 +Sh+Gap =4.66 m (90) 

Since the main concem is the solru· torque on the positive y-axis spacecraft face, 

the width of the plate was chosen as twice the width of the solar panels, which is 1.50m. 
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The flat plate superimposed on a scaled drawing of Kepler is shown in Figure 49. ; the 

flat plate is the hashed rectangle outlined in red. 

 
Figure 49.  Schematic of flat plate, after [48] 

As explained earlier, the distance from the cp to the cg is required to calculate the 

torque. It was assumed that Kepler’s origin was fixed at the center of the bottom of the 

bus structure. The centroid of the flat panel, corresponding to the cp, is in the middle of 

the panel. If the bottom of the panel lies on the y-z plane, at the x=0 position, the distance 

in the direction is half of the height, 2.33 m, of the panel. The distance in the 

direction is zero, since the flat plate rests vertically on the y-z plane, is parallel to the x-z 

plane and centered along the y-axis. The third coordinate, along the direction was 

chosen to align with the distance of the solar panels from the center of the spacecraft. 
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This distance was detennined by using the geomeby of a hexagon as shown in Figure 50 . 

. It was assumed that the solar panels are arranged in a regular hexagonal shape, minus 

two faces, with the one side as length Paw, from Table 6. . 

" z 

"' y 

Figure 50. Hexagonal pattem of solar panels 

Since the hexagon can be broken up into equilateral tt·iangles the distance from 

the center to the edge of the solar panel was equal to its width which was 0.752 m. 

Therefore, the coordinates of the cP of the flat plate are: 

cP = [ x,y,z] = [2.33, 0.752,0.0] m (91) 

Two more imp01iant parameters have to be defmed before conducting the analysis 

of the flat plate. These are the area and the coefficients of abs01ption, specular reflection 

and diffuse reflection of light for the solar panel. 

It was assumed that the solar panel absorbs most of the solar radiation and it 

ignores diffuse reflection. As such the following values for the coefficients in (78) are 

used: 

Pa = 0.8 

Ps = 0.2 

Pa =0.0 

90 

(92) 



The n01mal vector to the surface of the flat panel is another cmcial piece of 

inf01mation. As mentioned earlier the panel is parallel to the x-z plane giving it the 

following n01mal vector: 

n = [o,t,o] (93) 

The parameters for the flat plate SRP model are summarized in Table 7. 

Table 7. Parameters for the flat plate SRP model 

hpanel (m) Wpanel (m) cp (m) 
A 

A (m2
) n Pa Ps Pd 

4.66 1.50 [2.33,0.752,0.0] [0, 1 ,0] 6.99 0.8 0.2 0.0 

C. RESULTS FROM FLAT PLATE SRP MODEL 

The following figures display the results of the solar torque on the flat panel in 

different orientations defined in te1ms of azimuth and elevation angles. In addition, 

contour plots from a model developed by Ball Aerospace [13] are provided for 

companson. 
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Figure 51. Solar torque (~N-m) around the x-axis (a) flat plate model with 
cp=[2.10,0.752,0.0] m, (b) Ball model, after [13] 
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Figure 52.  Solar torque (μN-m) around the y-axis (a) flat plate model with 

cp=[2.10,0.752,0.0] m, (b) Ball model, after [13] 

 
Figure 53.  Solar torque (μN-m) around the z-axis (a) flat plate model with 

cp=[2.10,0.752,0.0] m, (b) Ball model, after [13] 

The results shown in Figure 51.  and Figure 52.  for the flat plate model are 

similar to the Ball model. There are deviations in the magnitude and the flat plate model 

has smoother contours, due to the simplicity of the model. However, in Figure 53. , the 

flat plate model has the maximum solar torque centered approximately on a rotation of 

(0, 15), whereas the Ball model is centered at (0, 3). If the equations for torque are 
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examined it can be shown that the deviations observed using the flat plate is expected. 

Further investigation is necessary to understand why the flat plate model around the z-

axis deviates from the model developed by Ball Aerospace. 

The cross-product for torque can be expanded to obtain: 

 ˆˆ ˆT ( ) ( ) ( )y z z y x Z z x x y y xr F r F i r F r F j r F r F k= − − − + −


  (94) 

Utilizing the assumed vector, [ , , ] [ , ,0]T T
x y z x yr r r r r r= =

 , (94) simplifies as: 

 ˆˆ ˆT ( ) ( ) ( )y z x Z x y y xr F i r F j r F r F k= − + −


  (95) 

For the flat plate SRP model the r-vector components are all positive. Therefore, 

by choosing different combinations of Fx and Fy, (the only two components of force 

relevant to the solar torque component around the z-axis), the deviation of the maximum 

solar torque can be predicted. For example, if x yF F<  but both forces point in opposite 

directions then the two components will complement each other. Initially, from 

examining (84) one may conclude that this combination of the forces should not make a 

difference on the maximum torque and that it should be when both rotations angles are 

zero. However, as demonstrated in Table 8.   that assumption is not true. It turns out that 

if 0 and 0elevation azimuth> = , then direction of the two forces are opposite and 

x yF F< , causing the magnitude of the solar torque around the z-axis to be greater than 

if 0elevation azimuth= = . Furthermore, when 0 and 0elevation azimuth< = , the 

directions of the forces are the same so even though x yF F<  the magnitude of the solar 

torque around the z-axis is less than when 0elevation azimuth= = . The fact that the 

maximum solar torque is not centered on (0,0) in Figure 53.  is therefore consistent with 

the simplification inherent to the developed model. 
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Table 8. Test cases to validate results in Figure 53. 

Az(j El(j 
BA s Fx Fv Fz Tx Tv Tz 

(I!N) (I!N) (I!N) (~-LN-m) (!!N-m) (~-LN-m) 

0 0 [0, 1 ,0] 0 -35 0 0 0 -31 
-45 0 ro,o. 10,-o. 101 0 -17 12 8.7 -10 -16 
45 0 [0,0. 70,0. 70] 0 -17 -12 -8.7 10 -16 
0 -10 [0.17,0.98,0] -4.0 -34 0 0 0 -27 
0 10 [ -0.17,0.98,0] 4.0 -34 0 0 0 -33 

If this deviation is predicted, then the question remains why the flat plate model 

produces this deviation that is not present in the Ball model. One possible explanation is 

that the flat plate model has a greater value in the y component of the cP than the Ball 

model. If, however the component in the y direction is small enough then the deviation is 

negligible. Altematively the deviation can be the result of complexity not captured using 

the flat plate model. 

D. MATCIDNG THE DATA 

As seen in Figure 51. , Figure 52. and Figure 53. , the data produced by the 

simple flat plate model has similar qualitative characteristics to the model developed by 

Ball Aerospace. However, the magnitude of the solar torques is different and the center 

point for the maximum solar torque around the z-axis is not the same. Therefore, it is 

useful to attempt to better match the Ball model. 

Several steps were taken to more closely match the single plate model to the Ball 

data. First, it was necessary to obtain data points from the Ball Aerospace contour plots 

(Figure 51. through Figure 53. ). A total of 9191 data points were obtained by digitizing 

the plots. This conesponds to 101 degrees range for elevation, and 91 degrees range for 

azimuth. The second, but more important step was to cany out a least squares 

optimization to minimize the difference between the two data sets. This was conducted 

using the built-in MATLAB function "lsqnonlin." The function "lsqnonlin" solves is 

[54]: 

(96) 
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This function is recommended when trying to solve a problem with no 

constraints, but with the objective of a least squares analysis [55]. The built-in MATLAB 

function converts the problem into a least squares problem, therefore it is only necessary 

to input [54]:  

 

1

2

( )
( )

( )

( )n

f x
f x

f x

f x

 
 
 =
 
 
 


  (97) 

Equation (98) is the function provided to lsqnonlin for the least squares fit. In this 

case it was decided to keep the center of pressure fixed, while making the cg as the 

unknown. The goal of this analysis is to minimize the overall error between the three 

plots. This can be accomplished by minimizing the following equation: 

 

, 2

y, 2

z, 2

(c (1), (2), (3)) ((c (2) (2))* ( (3) (3))* ...

( ((c (3) (3))* ( (1) (1))* ) ...

((c (1) (1))* ( (2) (2))*

g g g x B p g z p g y

B p g x p g z

B p g y p g x

f c c T c F c c F

T c F c c F

T c F c c F

= − − − −

+ − − − − −

+ − − − −

 (98) 

where Ti,B denotes data obtained from Ball contour plots. 

The results of this least squares analysis provided a new cg. However, because the 

cg represents the actual physical body of Kepler whereas the flat plate is a simplified 

model it is more useful to apply the adjustment to the cp. Although with only one flat plate 

there is not much difference in solving for a new cp or a new cg if it is decided to use 

more plates in the hopes of gaining greater fidelity in the model it is simpler to solve for a 

new cg and applying the adjustment to the cp of the plates rather than solve for multiple 

new cp’s. After applying the adjustment of the cg, the new cp becomes:  

 [ ] [ ] [ ], , , 3.11,0.368, 0.0379 3.11,0.368,0p newc x y z= = − ≈   (99) 

The results from this analysis imply that the flat plate should be moved up in the x̂

direction, inward in the negative ŷ  direction to better match the Ball data. 

If the single plate model is reconfigured with this new cp, the predicted SRP 

torque data more closely matches the data provided by Ball (see Figure 54. , Figure 55.  

and Figure 56. ). 
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Figure 54.  Solar torque (μN-m) around the x-axis (a) flat plate model with 

cp=[3.11,0.368,-0.0379] m, (b) Ball model, after [13] 

 
Figure 55.  Solar torque (μN-m) around the y-axis (a) flat plate model with 

cp=[3.11,0.368,-0.0379] m, (b) Ball model, after [13] 
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Figure 56.  Solar torque (μN-m) around the z-axis (a) flat plate model with 

cp=[3.11,0.368,-0.0379] m, (b) Ball model, after [13] 

The predicted torque magnitudes are much closer using the shifted cp, while the 

overall shape of the contours is similar. The improvement of the optimized model is 

better displayed via a comparison of the errors at different rotations. Because some values 

are very close to zero it was chosen to compare the flat plate models to the data points 

from the Ball model using the per axis absolute error, e.g.: 

 ,i i i Berror T T= −   (100) 

The absolute errors for each solar torque component are shown in Figure 57. , 

Figure 58.  and Figure 59. . 
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Figure 57.  Absolute error (μN-m) of solar torque around the x-axis (a) flat plate 

model with cp=[2.33,0.752,0.0] m (b) flat plate model with 
cp=[3.11,0.368,-0.0379] m 

 
Figure 58.  Absolute error (μN-m) of solar torque around the y-axis (a) flat plate 

model with cp=[2.33,0.752,0.0] m (b) flat plate model with 
cp=[3.11,0.368,-0.0379] m 
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Figure 59. Absolute en or (~-m) of solar torque around the z-axis (a) flat plate 
model with cp=(2.33,0.752,0.0] m (b) flat plate model with 

cp=(3.11 ,0.368,-0.0379] m 

Table 9. summarizes the maximum and minimum enors of the two models and it 

lists the least squares en or similar to what was minimized in (98) . 

(101) 

Table 9. highlights the fact that there is an improvement in predicting the torque 

when the center of pressm e is adjusted. The absolute en ors using the shifted flat plate 

model are now 25% of the original values. 

Table 9. Summruy of comparison of flat plate models 

Flat Plate Cp (m) error, (max,min) (,..N-m) errory (max,min) (,..N-m) error, (max,min) (,..N-m) LSE 

C,..N-m) 

(2.33 ,0.752,0.0] (7.0,1.2x104
) (15,8.3x104

) (28,13) 3065 

(3.11 ,0.368,-0.379] (1.4,1.3x10-)) (8 .0,7.5x10-)) (18,5.2x10-5
) 727 

Although there was an overall improvement using the shifted center of pressm e, 

the torque around the x-axis became skewed to the left. Recall that originally, the torque 

ru·mmd the z-axis was skewed. Nonetheless, the single plate model, pruticulru·ly with the 

Cp shift provides a reasonable estimate of the solar radiation pressure torque and so this 

model will be used in the sequel. 
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E. SUMMARY 

This chapter covered the work completed to determine the dimensions of Kepler 

and how those dimensions were used to create a flat plate solar torque model of Kepler. 

The flat plate model was then used to develop a prediction of SRP torque on Kepler. 

Finally, the predicted values were validated against the information provided from an 

available Ball model, which allowed parameters of the flat plate model to be optimized. It 

was determined that the flat plate model provides reasonable results and will be utilized 

in the next chapter, to explore the ability of the degraded reaction wheel system to 

maintain pointing in the presence of SRP torque. 
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VII. POINTING CAPABILITY USING TWO WHEELS 

Kepler was designed with four reaction wheels, however it currently has only two 

fully functioning wheels [56]. This poses a problem because conventional control 

algorithms, like PD controllers, can only command attitude movements of the spacecraft 

in the plane of the reaction wheels. Two wheels alone cannot provide three-axis control. 

This degradation and the fact that Kepler has a high pointing accuracy requirement forces 

one to analyze the impact of the solar torques to determine how long Kepler can point in 

a desired direction. This chapter will analyze the drift characteristics of Kepler with two 

reaction wheels using the flat plate SRP model, developed in the last chapter. 

A. SOLAR TORQUE RELATIVE IN THE REACTION WHEEL PLANE 

As mentioned in the introduction two out of the four original reaction wheels have 

failed. A schematic of the position of the reaction wheels on Kepler is shown in Figure 

60.  with the two failed wheels, two and four, marked by a cross. 

 
Figure 60.  Schematic of reaction Kepler reaction wheels, after [13] 

Calculating the component of solar torque in the plane and out of the plane of the 

reaction wheels will provide a quantifiable measure of how long Kepler can maintain its 
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pointing accuracy. If the solar torque is perpendicular to the normal vector to the reaction 

wheel plane then the solar torque vector lies in the RW-plane and can be rejected. 

Otherwise, the spacecraft will drift in the uncontrolled direction. The normal to the RW-

plane is given by: 

 1 3

1 3

ˆ ˆˆ
ˆ ˆ
w w

wheels
w w

r rn
r r

×
=

×
  (102) 

where ˆwheelsn  is the normal vector to RW-plane and wir  is the unit describing the 
orientation of the reaction wheel for i=1,3. 

In order to test if the solar torque vector is in the reaction wheel plane the dot 

product between the normal vector and solar torque is needed: 

 ˆˆcos( ) B
wheels sn Tθ = ⋅   (103) 

If cos( ) 0θ =  then the solar torque vector is perpendicular to the normal vector, meaning 

that the solar torque vector is completely in the RW-plane. 

Figure 61.  shows, a schematic of the plane made by the two reaction wheel 

vectors, the normal vector to the plane, the solar torque vector, and the angle between the 

normal and solar torque vector described in (103).  

Origin

1ŵr3ŵr
wW 

plane

ˆwheelsn

ˆB
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Figure 61.  Schematic of reaction wheel plane 
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The reaction wheel vectors used in (102) are listed in Table 10. with the failed 

reaction wheels highlighted in red and the ftmctioning wheels in green. 

Table 10. Kepler RW vectors, after [13] 

X 

y 

z 

The dot product of (103) solved for the same ranges for azimuth and elevation 

angles as the solar torque model are shown in Figure 62 .. 
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Figure 62.  shows that there are many orientations where the RW plane normal 

and the solar torque vector are perpendicular or at least near perpendicular. This implies 

that there are many orientations of the spacecraft where the remaining reaction wheels 

may be able to maintain the necessary pointing accuracy. However, further analysis is 

required, since the values are not exactly zero. 

Besides the simple calculation above, it is beneficial to determine the actual 

amount of solar torque that is in-plane and out of plane of the reaction wheels. This will 

help quantify how much torque can be compensated by the reaction wheels and how long 

before the out of plane disturbance torque creates a pointing drift greater than the 

tolerance required for science operations. Figure 63.  depicts the components of solar 

torque that can be considered in-plane and out-of-plane, with t̂  corresponding to the 

vector parallel to the RW-plane. 
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Figure 63.  Projections of solar torque onto unit vector normal to reaction wheel 

plane 

The vector projection may be used to calculate the out of plane torque. 
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  (104) 
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Equation (105) gives the amount of torque expressed in the body-frame that is 

perpendicular to the normal vector to the reaction wheel plane, in other words the solar 

torque in the plane of the reaction wheels. 

   (105) 

After calculating the vectors for the in-plane and out of plane torque, it is useful to 

plot the magnitudes of the two torque components based on different orientations of the 

plate; this provides a visualization to determine if there are any orientations that give 

acceptable pointing accuracy requirements. This analysis assumes that only one side of 

the plate will provide solar torque so the angle between the solar torque and the normal 

vector to the reaction wheels is limited as in (106). The results of this analysis are shown 

in Figure 64.  and Figure 65. . 

   (106) 

 

 
Figure 64.  In-plane solar torque (μN-m) 
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Figure 65.  Out of plane solar torque (μN-m) 

As expected the results displayed in Figure 64.  and Figure 65.  provides a similar 

conclusion to Figure 63. , that there are many orientations such that the out-of-plane- 

torque is minimized. These orientations allow for a wide range of elevation angles, but 

are minimized around an azimuth of zero degrees. This explains the ecliptic orientation of 

the K2 mission, which results in an azimuth of approximately zero degrees. 

Using the data above it is possible to determine how long it will take the 

spacecraft to rotate more than the required pointing stability. For this part of the analysis 

it is assumed that the reaction wheels can control the in-plane torque for a significantly 

longer period than a LC to any desired precision. This assumption is valid since the out-

of-plane torque will cause the spacecraft to move outside of the tolerances before the 

momentum capacity of the reaction wheels is exhausted.  

Predicting the spacecraft drift is a simple application of rotational dynamics. 

Equation (107) provides the relationship between angular momentum and torque 

projected on the principal body frame, where H is angular momentum and T is torque. 

   (107) 

For this analysis two further assumptions were made: one the spacecraft has an 

initial rotation of zero and the inertia matrix, , is constant. The analysis is 
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expected to provide conservative values, because the first assumption ignores the fact that 

while the spacecraft drifts it is obtaining an angular rate, which would affect the 

subsequent angular rates. The second assumption is a reasonable assumption, since in this 

analysis there is no concem about mass being lost due to thmster use. This allows (1 07) 

to be simplified into: 

- . -
H =Jm = T c 

This allows for the rate change in angular velocity to be calculated by: 

tJ = r 1f 

(108) 

(109) 

This problem then becomes a simple double integrator; the rate of change in 

angular velocity can be integrated twice to derive an equation for an angle at time, t: 

m(t) = mt + m(o) 

e(t) = .!_ tJt2 + m(O)t + e(o) 
2 

where m(O) = 8(0) = 0 

(110) 

Using the assumption stated on the initial conditions of Kepler it is simple to 

solve for the time it takes for the spacecraft to rotate through an angle of 

emax (t) = 0.009 arcsec around any axis using: 

t =128= 1 • 

mi (111) 

where i=x,y,z 

The results for the x-axis andy-axis are shown in Figure 66. and Figme 67 .. 
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Figure 66. Time it takes to rotate around the x-axis by 0.009 arcsec for flat plate 
model 
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Figure 67. Time it takes to rotate around they-axis by 0.009 arcsec for flat plate 
model 

There is no figure for the z-axis that is because of the original assumption that the 

wheels can control any torque that is in the RW-plane, and all torque around the z-axis is 

in the reaction wheel plane and can be controlled. Another imp01tant point to make about 

Figure 66. and Figure 67. is that the spacecraft can maintain a pointing accuracy of less 

than 0.009 arcsec, for less than 10 seconds around both the x and y axes, unless the 

azimuth rotation is limited between +/- 5 degrees. The maximum time to for Kepler to be 

within its design limits is about 149 seconds armmd the x-axis and about 219 seconds 

armmd the y-axis, both at a an attitude of (Az,El) = (-1,12)0
• Fmthennore, the analysis 

examines the x and y axes as if they cannot be controlled to see the impact of the drift in 

both directions. 

The Kepler spacecraft functions with using a CCD where each pixel is read after 

the integration time of 6.54 seconds. These integration times are then combined into two 

different types of photometric targets refen ed to as sh01t cadence, SC, and long cadence, 
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LC. An SC consists of at least 7 integration times with the default set for 9 for a total of 

58.8 seconds while an LC is at least 15 SC's, but by default 30 SC's for a total of about 

30 minutes [3]. Therefore, based on the controllability analysis most orientations would 

not be sufficient for even a SC and even the best orientation is not sufficient for the LC. 

This simple analysis seems to indicate that the Kepler spacecraft cannot meets its original 

mission requirements, using two reaction wheels. 

B. VALIDATING RESULTS 

It is beneficial before further analysis is conducted to confnm that the SRP flat 

plate model provides similar results to the model developed by Ball. This comparison 

was conducted by nllllling the same conu·ollability analysis on the Ball model as was 

done on the flat plate model, with the results shown in Figure 68. and Figure 69 .. 
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Figure 68. Time it takes to rotate around the x-axis by 0.009 arcsec for Ball 
model 
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Figure 69. Time it takes to rotate armmd the y-axis by 0.009 arcsec for Ball 
model 

As expected the rotation around the z-axis is zero like the flat plate model. Also 

the overall results from the x and y axes are very similar, besides for a ve1y small set of 

azimuth angles the spacecraft cannot maintain pointing accuracy for ve1y long. The 

difference is that the maximum values are a bit longer for the Ball model and with a 

slightly different orientation; for the x-axis the Ball model a maximum of about 228 

seconds and for the y-axis about 338 seconds both with the orientation of 

(Az,El) = (0,26)0
• Although the maximums are a bit higher they are not significantly 

higher, so the flat plate model is sufficient to provide a good estimate of the pointing 

pelfonnance of the failed spacecraft. 

C. FURTHER ANALYSIS 

It also useful to dete1m ine the maximum pointing en or for a SC and a LC; this 

inf01mation will be useful in dete1mining what kind of science maybe obtained with the 

degraded system. This analysis requires the use of (110), and for the times 58.8s will be 
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used for SC and 1800s will be used for the LC. The results are summarized in Figure 70. , 

Figure 71. , Figure 72. , Figure 73.  and Table 11.  . 

 
Figure 70.  Pointing error around x-axis for SC (arcsec) 

 
Figure 71.  Pointing error around y-axis for SC (arcsec) 
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Figure 72.  Pointing error around x-axis for LC (arcsec) 

 
Figure 73.  Pointing error around y-axis for LC (arcsec) 
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Table 11 . Unconu·olled pointing en ors for short and long cadences 

Target Type Maximum Minimum 
Rotation Pointing En or Rotation Pointing En or 
(Az,El) (arcsec) (Az,El) (arcsec) 

SC x-axis (45,-1)0 -7.8 (-1,12)0 -1.4x1o-j 
LC x-axis (45,-1)0 -7325 (-1,12)0 -1.34 
SC y-axis (45,-1)0 3.6 (-1,12)0 6.6x10-'~ 

LC y-axis (45,-1)0 3390 (-1,12)0 0.62 

Similar to above, the infonnation about the z-axis is such that there is no pointing 

enor, so those figures were omitted. As expected they-axis perf01med better, it had lower 

pointing enors. This was predicted by the previous analysis where they-axis maintains 

pointing accuracy for longer. 

As explained in IV.C.b.3 the pointing noise conu·ibuted by pointing enor around 

they-axis is almost 100 times worse than that conu·ibuted by the x-axis. Therefore, since 

the effects of the x-axis pointing enor is similar to they-axis pointing en or, if both they

axis and x-axis remain uncontrolled than the y-axis is the limiting case. However, the 

reaction wheels can control torque that is in the plane, so the reaction wheels can be used 

to control torque around the z-axis and one other axis. In the case of K2 it was decided to 

control armmd the y-axis and z-axis, while leaving the x-axis lmconu·olled [13]. Ideally, 

the second axis is the one that would provide the worst pointing noise. Using (50), but 

dividing by two to remove the effects of z-axis rotations, it is simple to identify, which 

pointing enor will be worse: 

= _!_(/ 1).8)2 

= _!_ ( 1399.20(0.62) ]
2 

= 9.3 
7] 2 d!).rp 2 150(1.34) 

(112) 

The pointing noise due to rotations around the y-axis is about an order of 

magnitude greater than the pointing noise due to rotations armmd the x-axis. Therefore, it 

is preferable to make the second axis of control the y-axis. This effectively makes the 

y-axis drift negligible and makes the x-axis pointing en or the limiting case. 

The K2 mission uses a hybrid conu·ol technique with a momentum bias [ 13] and 

to reduce the x-axis pointing enor. Momentum biasing is accomplished by evenly loading 

momentum "onto the two wheels to gyroscopically stabilize the third axis" [13]. Using 
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momentum biasing it is assumed that the angular rate around the y-axis and z-axis are 

minimal and can be ignored but leads to a different equation for computing the angular 

rate armmd the x-axis [57]: 

m = b~,x - a~,y 
x 2ach 

(113) 

where the constants are listed in Table 12. and the solar torque values are the same 

values that are used in the lmcontrolled analysis. 

Table 12. Constants needed for momentum bias angular rate estimate 

I :574 I :485 I :660 

Integrating (113) with respect to time provides a new equation for the pointing 

enor, lmder momentum bias: 

(114) 

Using (114) it is possible to perfonn the same analysis on the momentum bias 

situation for the SC, and LC integration times as was perfonned for the uncontrolled 

situation. The results are shown in Figure 74. , Figure 75. and summarized in Table 13 .. 
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Figure 74.  Pointing error around x-axis for SC using momentum bias, (arcsec) 

 
Figure 75.  Pointing error around x-axis for LC using momentum bias, (arcsec) 
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Table 13. Significant results for pointing error using momentum bias 

Target Type Maximum Minimum 
Orientation Pointing En or Orientation Pointing En or 
(Az,El) (arcsec) (Az,El) (arcsec) 

SC x-axis (45,-1)0 -18 (-1,12)0 -0.0032 
LC x-axis (45,-1)0 -554 (-1,12)0 -0.098 

There are a few interesting things to note in a comparison between the results of 

the lmcontrolled system to the conu·ol method using momentum bias. The SC integration 

time pointing enors are worse for the momentum bias. This is expected because in the 

case of momentum bias there is an initial angular rate armmd the x-axis that was assumed 

to be zero in the lmcontrolled system. Ultimately, though the momentum bias shows 

significant improvements over the unconu·olled system; it is about one order of 

magnitude better using the hybrid conu·ol with momentum bias. 

One more imp01iant thing to mention is that the results using the flat plate model 

are better than the average minimum drift provided by Ball of about 0.63 arcsec for a 30 

minute period [13]. Differences are expected because the flat plate SRP provides similar 

but not identical results as the Ball model. In addition, the momentum bias used in this 

thesis was assumed to remain constant throughout the whole 30 minute time period, but 

the momentum bias actually reduces as a function of time and slowly changes during the 

30 minute time period. 

D. POSSIBLE SCIENCE 

The analysis of the drift characteristics of the wheels is only imp01iant if it is 

related back to the science requirements discussed in the previous chapter. Figure 76. , 

uses the minimum pointing en ors armmd the x-axis, provided in Table 11. and Table 13. 

to add a third and fomih curve to Figltre 29 .. The third curve depicts the minimum size 

planet detectable in the uncontrolled system, whereas the fomih curve represents what is 

possible using momentum bias analysis. 
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Figme 76. Possible planet detection ability with drift rates per LC for Case 1, 
Case 3, llllconu·olled and momentum bias with flat plate model 

The blue cmve is based on the pointing enor in the scenario where only the y-axis 

and z-axis are conu·olled and the x-axis is allowed to rotate llllconu·olled with zero 

momentum bias. The minimum detectable planet is about 1 1~ or about the size of 

Jupiter; in this scenario Kepler provides an ability equivalent to ground systems to 

detecting planets [18], which calls into question the need to continue operating the 

system. It is clear from Figme 76. that in order to conduct science on par with the 

original Kepler mission allowing the x-axis to rotate llllconu·olled is insufficient. The 

green cmve and the black cmve represent pointing enor based on a hybrid conu·ol 

schema with momentum bias. The green cmve as explained earlier is based on Ball's 

model and the analysis of reference [13]. The black cmve is based on the minimum 

pointing enor obtained for the flat plate SRP model using momentum bias. The black 

cmve makes it seem possible to retmn to the original Kepler mission. However, similar to 
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Ball 's model, this requires Kepler to point in the ecliptic. It is not possible to point at the 

original target between Cygnus and Lyra and continue science operations. 

Finally, Figure 30. can be redone using the results of the momentum bias analysis 

as shown in Figure 77. . The uncontrolled case is not included because it provides a 

pointing noise armmd 2500ppm and would make the other inf01mation lmreadable. This 

also reinforces the need for unique engineering solutions like momentum bias to be able 

to make good use of Kepler. 
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Figure 77. Predicted photomeu·ic precision with momentum bias curve vs. 
actual data, after [ 46] 

Figure 77 shows that the analysis presented in this thesis has allowed reasonable 

bounds on the expected perf01mance of the K2 mission to be dete1mined. Moreover, 

these are consistent with the data obtained early in the K2 mission checkout. 
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E. SUMMARY 

The flat plate model provided sufficient results to begin analyzing the ability of 

Kepler to maintain its original pointing accuracy requirements. Unfortunately, based on 

the original analysis, with only two reaction wheels it does not seem possible for Kepler 

to return to its original mission since the pointing error is now much greater than desired. 

The flat plate model demonstrated that Kepler is more prone to rotate around the x-axis 

and in an uncontrolled situation it was clear that Kepler could not return to its original 

mission and is not necessarily better than ground systems with regards to finding planets. 

Subsequent analysis added momentum bias to the flat plate model drift characteristic 

analysis to demonstrate the advantages provided by this control technique. The results 

were promising; Kepler may not be able to return to its original orientation, but it may 

still be able to detect Earth-size planets if the science field of view is properly chosen. 

One limitation to be aware of for Case 3 and the momentum bias, is both scenarios 

assume that the pointing error is similar for every 30 minute period and does not account 

for the errors that can occur when the target star drifts across pixels. The results may be 

overly optimistic and do not necessarily provide the ability to stare at one point in the 

celestial sky for a 6.5hr period to detect a planet transit. Case 3 and the flat plate 

momentum bias results provide an upper and lower bound and give a fairly good 

approximation of Kepler’s current capabilities. 
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VIII. CONCLUSION 

This thesis had two main objectives: to describe the physics behind Kepler’s 

ability to detect planets and to develop a solar radiation pressure, SRP, model that could 

be used to illustrate why the original Kepler mission is no longer possible. Both of these 

objectives were sufficiently met, in addition, through the study of these objectives this 

thesis was able to bridge the gap between science requirements and engineering 

requirements.  

The first objective was accomplished by providing an understanding of planets 

and star classification, an understanding of the different planet detection methods and a 

greater explanation of the transit method used by Kepler. Also, the photometric precision 

was explained in terms of various noise terms. The equations developed were then used 

to give a simple analysis of the possible science during the original Kepler mission and 

for the K2 mission. 

The second part of the thesis focused on developing a simple solar torque model 

for Kepler. The SRP model was used to illustrate the effects of solar torque on pointing 

error. Using the flat plate SRP model it was shown that returning to the original Kepler 

mission is not possible, and showed the need for the hybrid control provided for the K2 

mission over the uncontrolled scenario analyzed in this thesis.  

One area of this work that could be improved upon is the model of photometric 

precision. A useful next step would be to develop a photometer numeric simulation for 

Kepler. This would the pointing noise to be more precisely analyzed so that a greater 

correlation to K2 mission results could be obtained. A second area of research that would 

further the work of this thesis would be to use the developed flat plate SRP model and 

test it using different control mechanisms in the hopes of further improving pointing 

accuracy beyond hybrid control. This may also provide a better understanding of the 

difference in the results between the momentum bias when applied to the flat plate SRP 

model versus the Ball predicted results. The K2 mission focuses on the ecliptic and the 

hybrid architecture seems to be supporting the ability to perform the science objective. 
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However, there may be other unique control solutions that make areas of the celestial sky 

besides the ecliptic possible, for science activities. 
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